首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The ion species extracted from transition metal nitride thin films were investigated in order to understand the field evaporation mechanism of nitrogen in atom probe analysis. Nitrides of group IV transition metal, ie, titanium (Ti), zirconium (Zr), and hafnium (Hf) nitrides, were chosen for analysis, owing to their good electrical conductivities. The samples were prepared by sputtering deposition of nitride thin film on a tungsten needle. Measurements were performed at 3 different direct current voltages, and for each voltage, we observed different ion species. For TiN and ZrN, both atomic metal ions and molecular ions were detected and TiN and ZrN tended to evaporate in the form of triple-charged molecular ions. For ZrN, Zr2+, Zr3+, ZrN3+, and (ZrN)23+ were observed at lower direct current voltages. For a higher tip voltage, N+ ions were detected in addition to these ions. These results suggest that the evaporation field of nitrogen is higher than those of Zr3+ and (ZrN)23+. In the analysis of an HfN tip, no ions could be detected. These results can be explained in terms of the differences between evaporation fields that were roughly estimated from the work functions and the bond energies of the analyzed nitrides.  相似文献   

2.
The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble-metal-free alternative plasmonic materials have attracted ever-increasing interest.Here we report the first use of plasmonic zirconium nitride(ZrN) nanoparticles as a promising photocatalyst for water splitting.Highl...  相似文献   

3.
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3N2, Mg3N2, and Ge3N4) have been studied by powder X‐ray diffraction (XRD) and 14N magic angle‐spinning (MAS) solid‐state NMR spectroscopy. For Ca3N2, Mg3N2, and Ge3N4, no 14N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and ‘high speed’ (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder‐XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their 14N MAS solid‐state NMR spectrum matches perfectly well with the number of nitrogen‐containing phases identified by powder‐XRD. The 14N MAS solid‐state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The use of urea as either a carbon or a nitrogen source enabled the synthesis of various early‐transition‐metal nitride and carbide nanoparticles (TiN, NbN, Mo2N, W2N, NbCxN1?x, Mo2C and WC). The ability of these particles to promote alkylation reactions with alcohols was tested on benzyl alcohol and acetophenone at 150 °C for 20 h in xylene. Group IV and V ceramics proved to be able to catalyse the formation of 1,3‐diphenyl propenone, whereas group VI ceramics showed a tendency to promote the Friedel–Crafts‐type reaction of benzyl alcohol on xylene (the solvent). TiN featured the highest activity for the alkylation of ketones and was further tested for more difficult alkylations. Group VI ceramics were further investigated as catalysts for the Friedel–Crafts‐type alkylation of aromatics with activated alcohols. Interestingly, even hexanol could be effectively used for these reactions.  相似文献   

5.
Zusammenfassung Röntgenographische Untersuchungen in den Systemen von UN mit den Nitriden der IV A-Übergangsmetalle: TiN, ZrN und HfN ergaben bei 2000° C vollkommene Mischbarkeit für die quasibinären Systeme UN–ZrN und UN–HfN sowie eine Löslichkeit von etwa 1 bis 4 Mol% TiN in UN bei 1700 bis 2400°C.
X-Ray methods were used to investigate the systems UN with nitrides of the IV A-Group transition metals: TiN, ZrN and HfN. At 2000°C the quasibinary systems UN–ZrN and UN–HfN show complete solid solubility where as TiN is soluble in UN from about 1 Mol% at 1700°C to about 4 Mol% at 2400°C.


Mit 3 Abbildungen  相似文献   

6.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

7.
Controlled coammonolysis of elementalkylamides in aprotic organic solvents at low temperatures have been shown to result in the formation of polyazanes. The synthetic procedure developed may be addressed as “sol‐gel‐route in the ammono system”. Pyrolysis of these novel polymer precursors gave access to multinary nitrides. For the model systems Si(NHMe)4/B(NMe2)3, Si(NHMe)4/Ti(NMe2)4, and Si(NHMe)4/Ta(NMe2)5 polymeric boro‐, titano and tantalosilazanes were obtained. Pyrolysis in ammonia at 1000 °C yielded amorphous silicon boron nitride, silicon titanium nitride and silicon tantalum nitride powders; further heating of the nitride powders at 1500 °C in nitrogen atmosphere led to the formation of partly crystalline composites of α‐Si3N4 and amorphous silicon boron nitride for the Si/B/N system, a composite of finely dispersed TiN and amorphous silicon titanium nitride for the Si/Ti/N system, and crystalline TaN and amorphous silicon nitride for the Si/Ta/N system. Furthermore, the structure and pyrolysis chemistry of the polymeric intermediates, as well as the morphology of the pyrolysis products, were studied by NMR, MAS‐NMR, FT‐IR, DTA‐TG‐MS, XRD, SEM, EDX and elemental analyses.  相似文献   

8.
The TiN(111)/ZrN(111) interface was studied by first‐principles method to provide the theoretical basis for developing the TiN/ZrN coatings. Twelve geometry structures of TiN(111)/ZrN(111) interfaces were established. The calculated interfacial work of adhesion reveals that the N‐terminated TiN/N‐terminated ZrN interface with TL site shows the strongest stability. For this TiN(111)/ZrN(111) interface, the results of the partial density of state indicate that the chemical bonding at the interface appeals both ionic and covalent characteristic, which is same as that in the bulk materials. The partial density of states for Zr, Ti, and N atoms at the interface are very similar with those in the bulk, which reveals that the electronic structure transition at the interface is smooth. The results of charge density and charge density difference demonstrate that the lost charge of Ti atom is larger than that of Zr atom, indicating that TiN is more ionic than ZrN. Calculations of the work of fracture indicate that the mechanical failure of the ZrN(111)/TiN(111) interface will take place at the interface. Besides that, the calculation result of the TiN(111)/ZrN(111) interface implies that the TiZrN2 phase might be formed at the interface because the contacting of the N―N bond is the most stable.  相似文献   

9.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

10.
A novel single‐source precursor NaGd(TFA)4(diglyme) (TFA=trifluoroacetate) was synthesized, characterized thoroughly, and used to obtain the hexagonal phase of NaGdF4 nanoparticles as an efficient matrix for lanthanide‐doped upconverting nanocrystals (NCs) that convert near‐infrared radiation into shorter‐wavelength UV/visible light. These NCs were then used to prepare well‐characterized TiO2@NaGdF4:Yb3+,Tm3+ nanocomposites to extend the absorption range of the TiO2 photocatalyst from the UV to the IR region. While the visible/near IR part of the photoluminescent spectra remains almost unaffected by the presence of TiO2, the UV part is strongly quenched due to the absorption of TiO2 above its gap at approximately 380 nm by energy transfer or FRET. Preliminary results on the photocatalytic activity of the above obtained nanocomposites are presented.  相似文献   

11.
Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon‐induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot‐electron‐assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady‐state and time‐resolved photoluminescence spectroscopy. Consequently, hot‐electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures.  相似文献   

12.
Localized surface plasmon resonance(LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts.In the past decades,noble metal nanoparticles(Au and Ag) with LSPR feature have found wide applications in solar energy conversion.Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures.However,high cost and...  相似文献   

13.
Introducing plasmonic metals into semiconductor materials has been proven to be an attractive strategy for enhancing photocatalytic activity in the visible region. In this work, a novel and efficient Ag/Ag2WO4/g‐C3N4 (AACN) ternary plasmonic photocatalyst was successfully synthesized using a facile one‐step in situ hydrothermal method. The composition, structure, morphology and optical absorption properties of AACN were investigated using X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–visible diffuse reflectance spectroscopy, respectively. Photocatalytic performance of AACN was evaluated via rhodamine B and tetracycline degradation. The results indicated that AACN had excellent photocatalytic performance for rhodamine B degradation with a rate constant of 0.0125 min?1, which was higher than those of Ag2WO4 and Ag/Ag2WO4. Characterization and photocatalytic tests showed that the strong coupling effect between the Ag/Ag2WO4 nanoparticles and the exfoliated ultrathin g‐C3N4 nanosheets was superior for visible‐light responsivity and reduced the recombination rate of photogenerated electrons and holes. A proposed mechanism is also discussed according to the band energy structure and the experimental results.  相似文献   

14.
The network polysilanes (polysilynes) [RMe2SiCH2CH2Si]n, [R=Ph ( 1 ), 2‐Furyl ( 2 )] have been synthesized by room temperature reaction of the corresponding organotrichlorosilane with Na dispersion in tetrahydrofuran (THF) medium. The method allows the formation of high molecular weight polymers [Mw/PDI = 10,504/2.2 ( 1 ), 9176/1.5 ( 2 )] in improved yields than those obtained from classical Wurtz coupling reaction (Na, toluene, 110 °C). These polymers act as reducing agents for Ag(I) and Au(III) ions to afford stable metal nanoparticles of 4–8 nm size domains in toluene medium. The corresponding polymer–silver nanocomposites, 1a and 2a , are fluorescent in the green light region (λmax = ~ 530 nm) due to the formation of silver nanoclusters (AgNCs) along with the nanoparticles (AgNPs). A simple chemical approach has been developed to modulate the plasmonic and emission intensities of the nanocomposite 1a by reacting with varying concentrations (10?12 to 10?7M) of HgI2 in toluene. The method allows enhancement of the fluorescence intensity associated with AgNCs. The results are explained by invoking coupling between the energies of surface plasmon resonance and the nanocluster electronic transition. The polymer–gold nanocomposites, 1b and 2b , are non‐fluorescent and the plasmonic resonance at 530 nm associated with AuNPs is found to be insensitive to Hg(II) ions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
In this paper we present aluminum phosphate nanocrystals, prepared by a hydrothermal reaction, using amphiphilic triblock copolymer F127 [(EO)106(PO)70(EO)106] as a morphology‐directing template. By verifying the pH from 10 to 12, the morphology progression of AlPO4 nanocrystals from nanoparticles to nanoparticle‐aggregated nanowires, and finally to multi‐strand nano‐ropes, was successfully demonstrated. The most influential factors in the morphology process were the initial pH level, the participation of surfactant‐template F127, and the change in pH during the reaction. We proposed a pH‐dependent model to illustrate both the growth of AlPO4 nanocrystals inside F127 amphiphilic domains and the chemical driving force that aggregated the nanoparticles into chain‐shaped nanowires. The incorporation of water molecules as H‐bonding linkers, to combine single nanowires into multi‐strand nano‐ropes, is also discussed in this model. Powder X‐ray diffraction (XRD) patterns of the nanoparticle‐aggregated nanowires and multi‐strand nano‐ropes were consistent with a mixed phase of berlinite and cristobalite structures, corresponding to the low‐temperature form (a‐form), while the AlPO4 nanoparticles showed a pure berlinite phase only.  相似文献   

16.
17.
Ag/mesoporous black TiO2 nanotubes heterojunctions (Ag‐MBTHs) were fabricated through a surface hydrogenation, wet‐impregnation and photoreduction strategy. The as‐prepared Ag‐MBTHs possess a relatively high specific surface area of ≈85 m2 g?1 and an average pore size of ≈13.2 nm. The Ag‐MBTHs with a narrow band gap of ≈2.63 eV extend the photoresponse from UV to the visible‐light and near‐infrared (NIR) region. They exhibit excellent visible‐NIR‐driven photothermal catalytic and photocatalytic performance for complete conversion of nitro aromatic compounds (100 %) and mineralization of highly toxic phenol (100 %). The enhancement can be attributed to the mesoporous hollow structures increasing the light multi‐refraction, the Ti3+ in frameworks and the surface plasmon resonance (SPR) effect of plasmonic Ag nanoparticles favoring light‐harvesting and spatial separation of photogenerated electron–hole pairs, which is confirmed by transient fluorescence. The fabrication of this SPR‐enhanced visible‐NIR‐driven Ag‐MBTHs catalyst may provide new insights for designing other high‐performance heterojunctions as photocatalytic and photothermal catalytic nanomaterials.  相似文献   

18.
High‐quality CdS and Cu7S4 quantum dots (QDs) were synthesized with N,N‐dibutylthiourea (DBTU) as an organic sulfur source. In this method, nucleation and growth reactions were controlled simply by the heating rate of the reaction. The mild oxidation conditions gave monodisperse CdS QDs exhibiting pure band‐edge emission with relatively high photoluminescence quantum yield. During the synthesis of Cu7S4 QDs, the addition of dodecanethiol to the reaction system controlled the reaction rate to give monodisperse spherical or disk‐shaped QDs. A hundred‐gram scale of copper precursor could be used to generate the high‐quality Cu7S4 QDs, indicating that an industrial‐scale reaction is achievable with our method. As observed in anisotropic noble‐metal nanocrystals, larger disk‐shaped Cu7S4 QDs showed lower localized‐surface‐plasmon resonance energy in the near‐infrared region. The disk‐shaped Cu7S4 QDs could be used effectively as templates to form cation‐exchanged monodisperse disk‐shaped CdS QDs.  相似文献   

19.
A promising photocatalytic system in the form of heterostructured nanocrystals (HNCs) is presented wherein alloyed ZnS–CuInS2 (ZCIS) semiconductor nanorods are decorated with Pt and Pd4S nanoparticles. This is apparently the first report on the colloidal preparation and photocatalytic behavior of ZCIS–Pt and ZCIS–Pd4S nanoscale heterostructures. Incorporation of Pt and Pd4S cocatalysts leads to considerable enhancement of the photocatalytic activity of ZCIS for visible‐light‐driven hydrogen production.  相似文献   

20.
Mo0, W0, Fe0, Ru0, Re0, and Zn0 nanoparticles—essentially base metals—are prepared as a general strategy by a sodium naphthalenide ([NaNaph])‐driven reduction of simple metal chlorides in ethers (1,2‐dimethoxyethane (DME), tetrahydrofuran (THF)). All the nanoparticles have diameters ≤10 nm, and they can be obtained either as powder samples or long‐term stable suspensions. Direct follow‐up reactions (e.g., Mo0+S8, FeCl3+AsCl3, ReCl5+MoCl5), moreover, allow the preparation of MoS2, FeAs2, or Re4Mo nanoparticles of similar size as the pristine metals (≤10 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号