首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of methylammonium halides and cobalt halides yielded the organic‐inorganic hybrid compounds of general formula (CH3NH3)2CoX4. By varying the different halides, we were able to synthesize the whole row from Cl to I as well as some mixed halides compounds and to determinate the crystal structures. (CH3NH3)2CoX4 (X = Cl, Br, Cl0.5Br0.5, Br0.5I0.5) crystallize isotypic to (CH3NH3)2HgCl4 in space group P21/c with Z = 4 [X = Cl: a = 7.6483(9), b = 12.6885(18), c = 10.8752(12) Å, β = 96.639(9)°; X = Cl0.5Br0.5: a = 7.8271(9), b = 12.9543(9), c = 11.1007(11) Å, β = 96.320(8)°; X = Br: a = 7.9782(2), b = 13.1673(2), c = 11.2602(2) Å, β = 96.3260(10)° and X = Br0.5I0.5: a = 8.2435(12), b = 13.645(2), c = 11.5856(18) Å, β = 95.54(2)°]. The mixed halides show a statistic distribution in both cases. In (CH3NH3)2CoCl2I2 an ordered variant is realized representing a new structure type [C2/m, Z = 4, a = 18.808(4), b = 7.3604(7), c = 10.4109(17) Å, β = 120.364(13)°]. (CH3NH3)2CoI4 crystallizes again isotypic to the respective mercury compound [(CH3NH3)2HgCl4] [Pbca, Z = 8, a = 10.9265(5), b = 12.1552(5), c = 20.9588(9) Å]. All structures are build up by inorganic tetrahedral [CoX4]2– anions and organic (CH3NH4)+ cations. Additionally the Raman spectra as well as the optical reflectance spectra are discussed.  相似文献   

2.
Despite the great success in the increase in the power conversion efficiency of lead halide perovskite solar cells, the toxicity of lead and the unstable nature of the materials are still major concerns for their wider implementation at the industrial level. Herein, large-size single crystals (SCs) are developed in HI solution by using a temperature lowering method and nanocrystals (NCs) of A3Bi2I9 perovskites [where A=CH3NH3+ (MA)+, Cs+, and (Rb0.05Cs2.95)+] are formed in ethanol (EtOH) and toluene (TOL). The stability of A3Bi2I9 perovskite is investigated by immersing the SCs for 24 h and pellets for 12 h in water. Moreover, the A3Bi2I9 perovskite NCs displays a promising photoluminescence quantum yield of 17.63 % and a long lifetime of 8.20 ns.  相似文献   

3.
《Solid State Sciences》2004,6(4):367-370
Calorimetric and X-ray measurements have been performed on ammonium oxyfluorides (NH4)3WO3F3 and (NH4)3TiOF5 from 120 up to 300 K. Two and one structural phase transitions were found for the former and latter compounds, respectively. In accordance with the entropy parameters both compounds undergo phase transitions of order–disorder type.  相似文献   

4.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   

5.
Studies on Polyhalides. III. Crystal Structures of [Cu(NH3)4I2 · I2] and [Cu(NH3)4I3]I3 Tetramminecopper(II)tetraiodide [Cu(NH3)4I2 · I2] (I) crystallizes monoclinically in the space group C2/m with a = 1 185.9 pm, b = 892.8 pm, c = 656.8 pm, β = 111.10° and Z = 2 formula units. Tetramminecopper(II)hexaiodide [Cu(NH3)4I3]I3 (II) crystallizes orthorhombically in the space group Pnnm with a = 874.9 pm, b = 1 089.8 pm, c = 885.3 pm, and Z = 2 formula units. A special feature of these structures are coordinated polyiodide ions I42? (I) or I3? (II). In both compounds four coplanar nitrogen atoms and two axial iodine atoms form a quasi-octahedral coordination around copper with the usual (4+2)-tetragonal distortion. The copper ions are connected by linear, centrosymmetric polyiodide ions I42? (I) or I3? (II). Therefore infinite planar zigzag chains of units [Cu(NH3)4I4] (I) or [Cu(NH3)4I3]+(II) are resulting. The counterion I3? (II) is intercalated between these chains.  相似文献   

6.
Synthesis and Crystal Structure of (NH4)3Cu4Ho2Br13. Further Bromides of the (NH4)3Cu4M2Br13 Type (M = Dy? Lu, Y) and on Rb3Cu4Ho2Br13 Single crystals of (NH4)3Cu4Ho2Br13 were obtained for the first time from the reaction of CuBr with HoBr3 which was contaminated with NH4Br: cubic, space group Pn3 , Z = 2, a = 1101.71(5) pm. The crystal structure may be considered as a variant of the fluorite type according to [(HoBr6)4][(NH4)6(Cu4Br)2] ? Ca4F8. Pure products can be prepared from the binary halides in glass ampoules at 350°C. The bromides (NH4)3Cu4M2Br13 (M = Dy? Lu, Y) and Rb3Cu4Ho2Br13 are isotypic with (NH4)3Cu4Ho2Br13.  相似文献   

7.
Cesium lead halide perovskite nanocrystals (NCs) CsPbX3 (X=Cl, Br, and I) have been prominent materials in the last few years due to their high photoluminescence quantum yield (PLQY) for light-emitting diodes and other significant applications in photovoltaics and optoelectronics. In colloidal CsPbX3 synthesis, the most commonly used ligands are oleic acid and oleylamine. The latter plays an important role in surface passivation but may also be responsible for poor colloidal stability as a result of facile proton exchange leading to the formation of labile oleylammonium halide, which pulls halide ions out of the NC surface. Herein, a facile, efficient, completely amine-free synthesis of cesium lead bromide perovskite nanocrystals using hydrobromic acid as halide source and tri-n-octylphosphane as ligand under open-atmospheric conditions is demonstrated. Hydrobromic acid serves as labile source of bromide ion, and thus this three-precursor approach (separate precursors for Cs, Pb, Br) gives more control than a conventional single-source precursor for Pb and Br (PbBr2). The use of HBr paved the way to eliminate oleylamine, and thus the formation of labile oleylammonium halide can be completely excluded. Various Cs:Pb:Br molar ratios were studied and optimum conditions for making very stable CsPbBr3 NCs with high PLQY were found. These completely amine-free CsPbBr3 perovskite NCs synthesized under bromine-rich conditions exhibit good stability and durability for more than three months in the form of colloidal solutions and films, respectively. Furthermore, stable tunable emission across a wide spectral range through anion exchange was demonstrated. More importantly, this work reports open-atmosphere-stable CsPbBr3 NCs films exhibiting strong PL, which can be further used for optoelectronic device applications.  相似文献   

8.
Crystal Structure of (NH4)3SnF7: A Double Salt According to (NH4)3[SnF6]F and not (NH4)4SnF8 (NH4)3SnF7 is obtained as colourless single crystals from the reaction of NH4HF2 with tin powder at 300°C. The crystal structure (cubic, Pm3m, Z = 1, a = 602.5(1) pm at 293 K; a = 598.0(1) pm at 100 K) contains [SnF6]2? octahedra and lonesome F? ions surrounded by NH4+ cations only; it may be considered as a derivative of the Cu3Au-type of structure according to Cu3[Au]□ ?(NH4)3[SnF6]F. The F? ions of the [SnF6]2? octahedra with their Sn4+ centre in the origin of the unit cell at m3m are disordered in different ways at 293 and 100 K, respectively.  相似文献   

9.
Assembling nanomaterials from two classes with exceptional control at the nanoscale can lead to new nanohybrids with novel properties. Here, we report the tunable up-conversion luminescence properties of CsPb(Br1-x/Ix)3 perovskite nanocrystals (PeNCs) sensitized by NaYF4:Yb,Tm@NaYF4 up-conversion nanoparticles (UCNPs) at 980 nm excitation. The up-conversion luminescence of NaYF4:Yb3+,Tm3+@NaYF4/CsPb(Br1-x/Ix)3 composite demonstrates that the radiative photon reabsorption process is accountable for the UC energy transfer from excited levels of Tm3+-based UCNPs to PeNCs. The long-lived Tm3+ states feed PeNCs carriers with intrinsic lifetimes extending from nanoseconds to microseconds. By varying the UCNPs/PeNCs concentration ratio, the NaYF4:Yb3+,Tm3+@NaYF4/CsPb(Br0.55I0.45)3 composite generates UC white light emission. The near-infrared excited white light-emitting devices are more compatible with human tissues than blue light-excited ones. Therefore, the prototype of UC white light-emitting diode is developed by coupling the UCNPs/PeNCs composite coated glass plate onto a commercial 940 nm-light-emitting diode chip. To overcome the counterfeiting risk that arises in the case of a single fluorescence mode, we developed a simple dual-model strategy based on manipulation of UC and down-conversion luminescence in anti-counterfeiting under 980 nm and 365 nm excitation, which makes it difficult to encrypt the information. In addition, the UCNPs/PeNCs composite exhibited better photostability under near-infrared illumination, retaining 85% of initial photoluminescence intensity, solving the problem of photo-instability.  相似文献   

10.
Synthesis and Crystal Structure of [Cr(NH3)6][Cr(NH3)2F4][BF4]2 The action of ammonium fluoride on a mixture of boron and chromium in a sealed Monel ampoule at 300 °C yields single crystals of [Cr(NH3)6][Cr(NH3)2F4][BF4]2. The crystal structure (tetragonal, P4/mbm, Z = 2, a = 1056.0(1), c = 781.7(1) pm; R1 = 0.0414; wR2 = 0.1087 for 411 reflections with I0 > 2σ(I)) contains [Cr(NH3)6]3+ and [Cr(NH3)2F4] octahedra and twice as many [BF4] tetrahedra that are arranged in a quadrupled super‐structure of the CsCl‐type of structure.  相似文献   

11.
Ni(NH3)Cl2 and Ni(NH3)Br2 were prepared by the reaction of Ni(NH3)2X2 with NiX2 at 350 °C in a steel autoclave. The crystal structures were determined by X‐ray powder diffraction using synchrotron radiation and refined by Rietveld methods. Ni(NH3)Cl2 and Ni(NH3)Br2 are isotypic and crystallize in the space group I2/m with Z = 8 and for Ni(NH3)Cl2: a = 14.8976(3) Å, b = 3.56251(6) Å, c = 13.9229(3) Å, β = 106.301(1)°; Ni(NH3)Br2a = 15.5764(1) Å, b = 3.74346(3) Å, c = 14.4224(1) Å, β = 105.894(1)°. The crystal structures are built up by two crystallographically distinct but chemically mostly equivalent polymeric octahedra double chains [NiX3/3X2/2(NH3)] (X = Cl, Br) running along the short b‐axis. The octahedra NiX5NH3 share common edges therein. The crystal structures of the ammines Ni(NH3)mX2 with m = 1, 2, 6 can be derived from that of the halides NiX2 (X = Cl, Br) by successive fragmentation of its CdCl2 like layers by NH3.  相似文献   

12.
[Pd(NH3)4][Ir0.5Os0.5Cl6] solid solution, isomorphic to [Pd(NH3)4][IrCl6], is synthesized and studied by X-ray powder diffraction and elemental analyses, IR and Raman spectroscopies.  相似文献   

13.
Two‐dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C4H9NH3)2(CH3NH3)2Pb3Br10 ( 1 ), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH3NH3PbBr3. Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single‐crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10−12 A), large on/off current ratios (ca. 2.5×103), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH3NH3PbI3.  相似文献   

14.
Thermal Decomposition of Some Alkali Metal and Ammonium Halogenoaurates(III), and the Crystal Structure of the Decomposition Products, Rb2Au2Br6, Rb3Au3Cl8, and Au(NH3)Cl3 The thermal decomposition of the salts MAuX4 and M2Au2I6, with M = K, NH4, Rb; and X = Cl, Br; has been investigated. With the exception of NH4AuCl4 and KAuCl4, all decompose with loss of halogen to the mixed valence compound M3Au3X8, sometimes via the intermediate M2Au2X6. Tetraiodoaurates are not stable at room temperature. In the decomposition of NH4AuCl4, HCl, and Au(NH3)Cl3 are formed. KAuCl4 decomposes directly into Au und KCl. The crystal lattices of the salts Rb2Au2Br6 and Rb3Au3Cl8 are monoclinic and built up from Rb+. AuX2?, and AuX4? ions. There exists a close structural relationship between Rb2Au2Br6, Cs2Au2Cl6, and the perovskite structure. Rb2Au2I6 is isotypic with Rb2Au2Br6. The Rb3Au3Cl8 structure type is also observed for the M3Au3X8 salts with M = NH4, K, Rb; and X = Br, I. In the structure of Au(NH3)Cl3 there are discrete molecules in which Au(III) is surrounded by 3 Cl and 1 N atoms in square coplanar coordination. The infrared spectra of these compounds are discussed.  相似文献   

15.
Synthesis, Structure, and Thermolysis of the (NH4)3[M2(NO3)9] (M ? La? Gd) The ternary ammonium nitrates (NH4)3[M2(NO3)9] (M ? La-Gd) are obtained as single crystals from a solution of the respective sesquioxides in a melt of NH4NO3 and sublimation of the excess NH4NO3. In the crystal structure of (NH4)3[Pr2(NO3)9] (cubic, P4332, Z = 4, a = 1 377.0(1) pm, R = 0.038, Rw = 0.023) Pr3+ is surrounded by six bidentate nitrate ligands of which three are bridging to neighbouring Pr3+ ions. This results in a branched folded chain, held together by the NH4+ ions which occupy cavities in the structure. (NH4)3[Pr2(NO3)9] is the first intermediate product of the thermal decomposition of (NH4)2[Pr(NO3)5(H2O)2] · 2H2O.  相似文献   

16.
The expanding range of optoelectronic applications of lead-halide perovskites requires their production in diverse forms (single crystals, thin- and thick-films or even nanocrystals), motivating the development of diverse materials processing and deposition routes that are specifically suited for these structurally soft, low-melting semiconductors. Pressure-assisted deposition of compact pellets or thick-films are gaining popularity, necessitating studies on the pressure effects on the atomic structure and properties of the resulting material. Herein we report the phase transformation in bulk polycrystalline cesium lead bromide from its three-dimensional perovskite phase (γ-CsPbBr3) into the one-dimensional polymorph (δ-CsPbBr3) upon application of hydrostatic pressure (0.35 GPa). δ-CsPbBr3 is characterized by a wide bandgap of 2.9 eV and broadband yellow luminescence at 585 nm (2.1 eV) originating from self-trapped excitons. The formation of δ-CsPbBr3 was confirmed and characterized by Raman spectroscopy, 207Pb and 133Cs solid-state nuclear magnetic resonance, X-ray diffraction, absorption spectroscopy, and temperature-dependent and time-resolved photoluminescence spectroscopy. No such phase transition was observed in colloidal CsPbBr3 nanocrystals.  相似文献   

17.
Single Crystal Structure of (NH4)2NaInF6 (NH4)2NaInF6 has been synthesized via a novel route from In2O3, NaF and NH4F and its crystal structure has been determined using single crystal techniques (Fm3 m, a = 8.6675(3) Å, Z = 4, 4 106 reflections, R = 0.007). The crystal structure derives from the elpasolite type of structure, the ammonium ions are not disordered.  相似文献   

18.
Calorimetric measurements performed in a wide temperature range on (NH4)3VO2F4 have shown the presence of four heat capacity anomalies at T1 = 438 K, T2 = 244 K, T3 = 210.2 K, T4 = 205.1 K associated with the first order phase transitions. In accordance with the permittivity behavior, the structural transformations are of nonferroelectric nature. Pressure dependence of the phase transition temperatures has been studied by DTA under pressure. The entropy of phase transitions is analyzed mainly in the framework of the orientational disordering of NH4+ and VO2F43? ions in a cubic phase.  相似文献   

19.
Metal Ampoules as Mini‐Autoclaves: Syntheses and Crystal Structures of [Al(NH3)4Cl2][Al(NH3)2Cl4] and (NH4)2[Al(NH3)4Cl2][Al(NH3)2Cl4]Cl2 The salts [Al(NH3)4Cl2]+[Al(NH3)2Cl4]≡AlCl3 · 3 NH3 ( 1 ) and (NH4+)2[Al(NH3)4Cl2]+[Al(NH3)2Cl4](Cl)2≡ AlCl3 · 3 NH3 · (NH4)Cl ( 2 ) have been obtained as single crystals during the reactions of aluminum and aluminum trichloride, respectively, with ammonium chloride in sealed Monel metal containers. The crystal structure of 1 was determined again [triclinic, P‐1; a = 574.16(10); b = 655.67(12); c = 954.80(16) pm; α = 86.41(2); β = 87.16(2); γ = 84.89(2)°], that of 2 for the first time [monoclinic, I2/m; a = 657.74(12); b = 1103.01(14); c = 1358.1(3) pm; β = 103.24(2)°].  相似文献   

20.
Abstract. [Tetraamminecadmium(II)] bis(permanganate) ( 1 ) was prepared and its crystal structure was elucidated with XRD‐Rietveld refinement and vibrational spectroscopic methods. Compound 1 has a cubic lattice consisting of a 3D hydrogen‐bonded network built as four by four distorted tetrahedral blocks of [Cd(NH3)4]2+ cations and MnO4 anions, respectively. The other four permanganate ions are located in a crystallographically different environment, placed in the cavities formed by the attachment of the building blocks. A low‐temperature (≈100 °C) solid phase quasi‐intramolecular redox reaction producing ammonium nitrate and amorphous CdMn2O4 could be established. Neither solid phase nor aqueous solution phase thermal deammoniation of compound 1 can be used to prepare Cd(MnO4)2 and [Cd(NH3)2(MnO4)2]. During deammoniation of compound 1 in aqueous solution a precipitate consisting of Cd(OH)2 forms. Additionally, solid MnO2 and ammonium permanganate (NH4MnO4) forms. The solid phase deammoniation reaction (toluene used as heat convecting medium) with subsequent aqueous leaching of the ammonium nitrate formed has proved to be an easy and convenient technique for the synthesis of amorphous CdMn2O4+x type NOx and MeSH sensor precursors. The 1 ‐ D perdeuterated complex was also synthesized to distinguish the N–H(D) and O–H(D) fragment signals in the TG‐MS spectra and to elucidate the vibrational characteristics of the overlapping Mn–O and Cd–N frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号