首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P2‐type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2‐type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2‐type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau‐free P2‐type cathode‐Na0.85Li0.12Ni0.22Mn0.66O2 (P2‐NLNMO) was developed. The complete solid‐solution reaction over a wide voltage range ensures both fast Na+ mobility (10?11 to 10?10 cm2 s?1) and small volume variation (1.7 %). The high sodium content P2‐NLNMO exhibits a higher reversible capacity of 123.4 mA h g?1, superior rate capability of 79.3 mA h g?1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid‐solution reaction are critical to realizing high‐performance P2‐type cathodes for sodium‐ion batteries.  相似文献   

2.
《化学:亚洲杂志》2017,12(8):882-889
Ag0.5La0.5TiO3 with an ABO3 perovskite structure was synthesized by a newly developed ion‐exchange method. Molten Ag2SO4 instead of traditional molten AgNO3 was used as Ag+ source in view of its high decomposition temperature (1052 °C), thereby guaranteeing the complete substitution of Ag+ for Na+ in Na0.5La0.5TiO3 with a stable ABO3 perovskite structure at a high ion‐exchange temperature (700 °C). Under full‐arc irradiation, the O2‐evolution activity of Ag0.5La0.5TiO3 was about 1.6 times that of Na0.5La0.5TiO3 due to the optimized electronic band structures and local lattice structures. On the one hand, the substitution of Ag+ for Na+ elevated the VBM and thus narrowed the band gap from 3.19 to 2.83 eV, thereby extending the light‐response range and, accordingly, enhancing the photoexcitation to generate more charge carriers. On the other hand, the substitution of Ag+ for Na+ induced a lattice distortion of the ABO3 perovskite structure, thereby promoting the separation and migration of charge carriers. Moreover, under visible‐light irradiation, Ag0.5La0.5TiO3 displayed notable O2 evolution whereas Na0.5La0.5TiO3 showed little O2 evolution, thus demonstrating that the substitution of Ag+ for Na+ enabled the use of visible light to evolve O2 photocatalytically. This work presents an effective route to explore novel Ag‐based photocatalysts.  相似文献   

3.
Li‐rich layered oxide Li1.18Ni0.15Co0.15Mn0.52O2 (LNCM) is, for the first time, examined as the positive electrode for hybrid sodium‐ion battery and its Na+ storage properties are comprehensively studied in terms of galvanostatic charge–discharge curves, cyclic voltammetry and rate capability. LNCM in the proposed sodium‐ion battery demonstrates good rate capability whose discharge capacity reaches about 90 mA h g?1 at 10 C rate and excellent cycle stability with specific capacity of about 105 mA h g?1 for 200 cycles at 5 C rate. Moreover, ex situ ICP‐OES suggests interesting mixed‐ions migration processes: In the initial two cycles, only Li+ can intercalate into the LNCM cathode, whereas both Li+ and Na+ work together as the electrochemical cycles increase. Also the structural evolution of LNCM is examined in terms of ex situ XRD pattern at the end of various charge–discharge scans. The strong insight obtained from this study could be beneficial to the design of new layered cathode materials for future rechargeable sodium‐ion batteries.  相似文献   

4.
Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In‐depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP‐based composites for high‐performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+, Na+, and K+ with BP were performed. Ex situ X‐ray absorption near‐edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+, which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3P, compared with Li3P and Na3P. As a result, restricting the formation of K3P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g?1 which retains at 600 mAh g?1 after 50 cycles at 0.25 A g?1.  相似文献   

5.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

6.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

7.
Titanium dioxide (TiO2) is considered a promising anode material for high‐power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high‐power, long‐life LIB anodes. A self‐templating method for the synthesis of mesoporous microboxes was developed through Na2EDTA‐assisted ion exchange of CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. This nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g−1 after 300 cycles at 1 C and good rate capabilities up to 20 C.  相似文献   

8.
Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low‐cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet‐supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2‐RGO materials are used for investigation of Li‐ion insertion properties, which show a reversible capacity of 235 mA h g?1 at 200 mA g?1 and 150 mA h g?1 at 1000 mA g?1 after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high‐rate performance, and strong cycling stability of the TiO2‐RGO composites.  相似文献   

9.
MoS2 nanoflowers with expanded interlayer spacing of the (002) plane were synthesized and used as high‐performance anode in Na‐ion batteries. By controlling the cut‐off voltage to the range of 0.4–3 V, an intercalation mechanism rather than a conversion reaction is taking place. The MoS2 nanoflower electrode shows high discharge capacities of 350 mAh g?1 at 0.05 A g?1, 300 mAh g?1 at 1 A g?1, and 195 mAh g?1 at 10 A g?1. An initial capacity increase with cycling is caused by peeling off MoS2 layers, which produces more active sites for Na+ storage. The stripping of MoS2 layers occurring in charge/discharge cycling contributes to the enhanced kinetics and low energy barrier for the intercalation of Na+ ions. The electrochemical reaction is mainly controlled by the capacitive process, which facilitates the high‐rate capability. Therefore, MoS2 nanoflowers with expanded interlayers hold promise for rechargeable Na‐ion batteries.  相似文献   

10.
Sodium‐ion batteries are important alternative energy storage devices that have recently come again into focus for the development of large‐scale energy storage devices because sodium is an abundant and low‐cost material. However, the development of electrode materials with long‐term stability has remained a great challenge. A novel negative‐electrode material, a P2‐type layered oxide with the chemical composition Na2/3Co1/3Ti2/3O2, exhibits outstanding cycle stability (ca. 84.84 % capacity retention for 3000 cycles, very small decrease in the volume (0.046 %) after 500 cycles), good rate capability (ca. 41 % capacity retention at a discharge/charge rate of 10 C), and a usable reversible capacity of about 90 mAh g?1 with a safe average storage voltage of approximately 0.7 V in the sodium half‐cell. This P2‐type layered oxide is a promising anode material for sodium‐ion batteries with a long cycle life and should greatly promote the development of room‐temperature sodium‐ion batteries.  相似文献   

11.
Hierarchical and hollow nanostructures have recently attracted considerable attention because of their fantastic architectures and tunable property for facile lithium ion insertion and good cycling stability. In this study, a one‐pot and unusual carving protocol is demonstrated for engineering hollow structures with a porous shell. Hierarchical TiO2 hollow spheres with nanosheet‐assembled shells (TiO2 NHS) were synthesized by the sequestration between the titanium source and 2,2′‐bipyridine‐5,5′‐dicarboxylic acid, and kinetically controlled etching in trifluoroacetic acid medium. In addition, annealing such porous nanostructures presents the advantage of imparting carbon‐doped functional performance to its counterpart under different atmospheres. Such highly porous structures endow very large specifics surface area of 404 m2 g?1 and 336 m2 g?1 for the as‐prepared and calcination under nitrogen gas. C/TiO2 NHS has high capacity of 204 mA h g?1 at 1 C and a reversible capacity of 105 mA h g?1 at a high rate of 20 C, and exhibits good cycling stability and superior rate capability as an anode material for lithium‐ion batteries.  相似文献   

12.
A strategy is described to increase charge storage in a dual electrolyte Na‐ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na+ ion de‐insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox‐active electrolytes augment this property via charge transfer reactions at the electrode–electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na4Fe(CN)6) solution is employed as the redox‐active electrolyte (Na‐FC) and sodium nickel Prussian blue (Nax‐NiBP) as the Na+ ion insertion/de‐insertion cathode. The capacity of DESIB with Na‐FC electrolyte is twice that of a battery using a conventional (Na2SO4) electrolyte. The use of redox‐active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high‐energy‐density storage systems.  相似文献   

13.
《中国化学快报》2021,32(12):3847-3851
P-doping is an effective way to modulate the electronic structure and improve the Na+ diffusion kinetics of TiO2, enabling enhanced electrochemical performance. However, it is a challenge to prepare TiO2 with a high P-doping concentration starting from TiO2 in a crystalline state. In this work, we design a novel two-step route for constructing a carbon-coated anatase P-doping TiO2 nanospheres (denote as (P-AnTSS)@NC) with high P-doping concentration, by utilizing amorphous TiO2 nanospheres with the ultra-high specific area as P-doping precursor firstly, and followed by carbon coating treatment. Experimental results demonstrate that P is successfully doped into the crystal lattice and carbon layer is well coated on the surface of TiO2, with P-doping and carbon-coating contents of ~13.5 wt% and 10.4 wt%, respectively, which results in the enhanced pseudocapacitive behavior as well as favorable Na+ and electron transferring kinetics. The (P-AnTSS)@NC sample shows excellent rate and cycle performance, exhibiting specific capacities of 177 and 115 mAh/g at 0.1 and 1.0 A/g after 150 and 2000 cycles, respectively.  相似文献   

14.
A key challenge for potassium‐ion batteries is to explore low‐cost electrode materials that allow fast and reversible insertion of large‐ionic‐size K+. Here, we report an inorganic‐open‐framework anode (KTiOPO4), which achieves a reversible capacity of up to 102 mAh g?1 (307 mAh cm?3), flat voltage plateaus at a safe average potential of 0.82 V (vs. K/K+), a long lifespan of over 200 cycles, and K+‐transport kinetics ≈10 times faster than those of Na‐superionic conductors. Combined experimental analysis and first‐principles calculations reveal a charge storage mechanism involving biphasic and solid solution reactions and a cell volume change (9.5 %) even smaller than that for Li+‐insertion into graphite (≈10 %). KTiOPO4 exhibits quasi‐3D lattice expansion on K+ intercalation, enabling the disintegration of small lattice strain and thus high structural stability. The inorganic open‐frameworks may open a new avenue for exploring low‐cost, stable and fast‐kinetic battery chemistry.  相似文献   

15.
A key challenge for potassium‐ion batteries is to explore low‐cost electrode materials that allow fast and reversible insertion of large‐ionic‐size K+. Here, we report an inorganic‐open‐framework anode (KTiOPO4), which achieves a reversible capacity of up to 102 mAh g?1 (307 mAh cm?3), flat voltage plateaus at a safe average potential of 0.82 V (vs. K/K+), a long lifespan of over 200 cycles, and K+‐transport kinetics ≈10 times faster than those of Na‐superionic conductors. Combined experimental analysis and first‐principles calculations reveal a charge storage mechanism involving biphasic and solid solution reactions and a cell volume change (9.5 %) even smaller than that for Li+‐insertion into graphite (≈10 %). KTiOPO4 exhibits quasi‐3D lattice expansion on K+ intercalation, enabling the disintegration of small lattice strain and thus high structural stability. The inorganic open‐frameworks may open a new avenue for exploring low‐cost, stable and fast‐kinetic battery chemistry.  相似文献   

16.
Phase‐pure anatase TiO2 nanofibers with a fiber‐in‐tube structure were prepared by the electrospinning process. The burning of titanium‐oxide‐carbon composite nanofibers with a filled structure formed as an intermediate product under an oxygen atmosphere produced carbon‐free TiO2 nanofibers with a fiber‐in‐tube structure. The sizes of the nanofiber core and hollow nanotube were 140 and 500 nm, respectively. The heat treatment of the electrospun nanofibers at 450 and 500 °C under an air atmosphere produced grey and white filled‐structured TiO2 nanofibers, respectively. The initial discharge capacities of the TiO2 nanofibers with the fiber‐in‐tube and filled structures and the commercial TiO2 nanopowders were 231, 134, and 223 mA h g?1, respectively, and their corresponding charge capacities were 170, 100, and 169 mA h g?1, respectively. The 1000th discharge capacities of the TiO2 nanofibers with the fiber‐in‐tube and filled structures and the commercial TiO2 nanopowders were 177, 64, and 101 mA h g?1, respectively, and their capacity retentions measured from the second cycle were 89, 82, and 52 %, respectively. The TiO2 nanofibers with the fiber‐in‐tube structure exhibited low charge transfer resistance and structural stability during cycling and better cycling and rate performances than the TiO2 nanofibers with filled structures and the commercial TiO2 nanopowders.  相似文献   

17.
Compositing amorphous TiO2 with nitrogen‐doped carbon through Ti? N bonding to form an amorphous TiO2/N‐doped carbon hybrid (denoted a‐TiO2/C? N) has been achieved by a two‐step hydrothermal–calcining method with hydrazine hydrate as an inhibitor and nitrogen source. The resultant a‐TiO2/C? N hybrid has a surface area as high as 108 m2 g?1 and, when used as an anode material, exhibits a capacity as high as 290.0 mA h g?1 at a current rate of 1 C and a reversible capacity over 156 mA h g?1 at a current rate of 10 C after 100 cycles; these results are better than those found in most reports on crystalline TiO2. This superior electrochemical performance could be ascribed to a combined effect of several factors, including the amorphous nature, porous structure, high surface area, and N‐doped carbon.  相似文献   

18.
The allosteric modulation of G‐protein‐coupled receptors (GPCRs) by sodium ions has received significant attention as crystal structures of several receptors show Na+ ions bound to the inactive conformations at the conserved Asp2.50. To date, structures from 24 families of GPCRs have been determined, though mechanistic insights into Na+ binding to the allosteric site are limited. We performed hundreds‐of‐microsecond long simulations of 18 GPCRs and elucidated their Na+ binding mechanism. In class A GPCRs, the Na+ ion binds to the conserved residue 2.50 whereas in class B receptors, it binds at 3.43b, 6.53b, and 7.49b. Using Markov state models, we obtained the free energy profiles and kinetics of Na+ binding to the allosteric site, which reveal a conserved mechanism of Na+ binding for GPCRs and show the residues that act as major barriers for ion diffusion. Furthermore, we also show that the Na+ ion can bind to GPCRs from the intracellular side when the allosteric site is inaccessible from the extracellular side.  相似文献   

19.
The title compound, Na+·C9H7N4O5S·2H2O, presents a Z configuration around the imine C=N bond and an E configuration around the C(O)NH2 group, stabilized by two intra­molecular hydrogen bonds. The packing is governed by ionic inter­actions between the Na+ cation and the surrounding O atoms. The ionic unit, Na+ and 2‐oxo‐3‐semicarbazono‐2,3‐dihydro‐1H‐indole‐5‐sulfonate, forms layers extending in the bc plane. The layers are connected by hydrogen bonds involving the water mol­ecules.  相似文献   

20.
The Mannich aminomethylation reaction of aromatic thiols has been used to produce diaza‐18‐crown‐6 ligands containing thiol‐derived side arms. Thiophenols were attached to the azacrown through N‐CH2‐S linkages even in the presence of hydroxy or acetamido groups. Heteroaromatic thiols containing N=C‐SH (or NH‐C=S) structural fragments were attached to diaza‐18‐crown‐6 by N‐CH2‐N linkages with the thiol becoming a thione function. X‐ray crystal structural analyses show the N‐CH2‐S and N‐CH2‐N linkages for some of the new macrocyclic compounds. Interactions of four of the new diaza‐18‐crown‐6 ligands with Na+, K+, Ba2+, Ag+, Zn2+, Cd2+, Ni2+, and Cu2+ were evaluated by calorimetric titration at 25° in methanol. The results show that these ligands form stable complexes with many of the metal ions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号