首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
阚成友 《高分子科学》2014,32(2):177-186
Three-layer core/shell latex particles with various shell crosslinking level and shell thickness were prepared by multistep emulsion polymerization, and the hollow latex particles with different morphologies were then obtained after alkali post-treatment. Influences of divinyl benzene(DVB) content and the core/shell mass ratio on emulsion polymerization and particle morphology were investigated. Results showed that with the increase of DVB content, the percentage of total amount of ―COOH on the particle surface and free in aqueous phase(PSFa) decreased, and the morphology of the post-treated particles underwent evolution from cracked, intact hollow to deficient swelling structure. Decreasing the core/shell mass ratio could not only make more carboxyl groups encapsulated by the shell, but also increase the shell resistance to the swelling of the core. The uniform hollow latex particles with intact morphology were obtained when the DVB content was 3.54 wt% and the core/shell mass ratio was 1/6.  相似文献   

2.
Hierarchical Fe3O4@poly(4‐vinylpyridine‐co‐divinylbenzene)@Au (Fe3O4@P(4‐VP–DVB)@Au) nanostructures were fabricated successfully by means of a facile two‐step synthesis process. In this study, well‐defined core–shell Fe3O4@P(4‐VP–DVB) microspheres were first prepared with a simple polymerization method, in which 4‐VP was easily polymerized on the surface of Fe3O4 nanoparticles by means of strong hydrogen‐bond interactions between ? COOH groups on poly(acrylic acid)‐modified Fe3O4 nanoparticles and a 4‐VP monomer. HAuCl4 was adsorbed on the chains of a P(4‐VP) shell and then reduced to Au nanoparticles by NaBH4, which were embedded into the P(4‐VP) shell of the composite microspheres to finally form the Fe3O4@P(4‐VP–DVB)@Au nanostructures. The obtained Fe3O4@P(4‐VP–DVB)@Au catalysts with different Au loadings were applied in the reduction of 4‐nitrophenol (4‐NP) and exhibited excellent catalytic activity (up to 3025 h?1 of turnover frequency), facile magnetic separation (up to 31.9 emu g?1 of specific saturation magnetization), and good durability (over 98 % of conversion of 4‐NP after ten runs of recyclable catalysis and almost negligible leaching of Au).  相似文献   

3.
The hairy poly(methacrylic acid‐co‐divinylbenzene)‐g‐poly(N‐isopropylacrylamide) (P(MAA‐co‐DVB)‐g‐PNIPAm) nanocapsules with pH‐responsive P(MAA‐co‐DVB) inner shell and temperature‐responsive PNIPAm brushes were prepared by combined distillation–precipitation copolymerization and surface thiol‐ene click grafting reaction using 3‐(trimethoxysilyl)propyl methacrylate‐modified silica (SiO2‐MPS) nanospheres as a sacrificial core material. The well‐defined PNIPAm was synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization. The chain end was converted to a thiol by chemical reduction. The PNIPAm was integrated into the nanocapsules via thiol‐ene click reaction. The surface thiol‐ene click reaction conduced to tunable grafting density of PNIPAm brushes. The grafting densities decreased from 0.70 chains nm?2 to 0.15 chains nm?2 with increasing the molecular weight of grafted PNIPAm chains. Using water soluble doxorubicin hydrochloride (DOX·HCl) as a model molecular, the tunable shell permeability of the nanocapsule was investigated in detail. The permeability constant can be tuned by controlling the thickness of the P(MAA‐co‐DVB) inner shell, the grafting density of PNIPAm brushes, and the environmental pH and temperature. The tunable shell permeability of these nanocapsules results in the release of the loaded guest molecules with manipulable releasing kinetics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2202–2216  相似文献   

4.
Summary: The synthesis of core‐shell particles with a poly(ε‐caprolactone) (PCL) shell and magnetite (Fe3O4) contents of between 10 wt.‐% and 41 wt.‐% proceeds by surface‐initiated ring‐opening polymerization of ε‐caprolactone to give surface‐immobilized oligomers with between 1 400 g · mol−1 and 11 500 g · mol−1. The particles are dispersable in good solvents for the PCL shell. Magnetization experiments on the resulting superparamagnetic ferrofluids give a core‐size distribution with an average diameter, dv, of about 9.7 nm.

TEM image of Fe3O4/PCL core‐shell particles cast from CHCl3 dispersion.  相似文献   


5.
The behavior of hydroxide and hydrated protons, the auto‐ionization products of water, at surfaces is important for a wide range of applications and disciplines. However, it is unknown at which bulk concentration these ions start to become surface active at the water–air interface. Here, we report changes in the D2O–air interface in the presence of excess D+hyd/OD?hyd determined using surface‐sensitive vibrational sum‐frequency generation (SFG) spectroscopy. The onset of the perturbation of the D2O surface occurs at a bulk concentration as low as 2.7±0.2 mm D+hyd. In contrast, a concentration of several hundred mm OD?hyd is required to change the D2O surface. The hydrated proton is thus orders of magnitude more surface‐active than hydroxide at the water–air interface.  相似文献   

6.
Nanoscale composite materials based on the SiO2–TiO2 system were prepared in the form of co-precipitated composites and core SiO2–shell TiO2 composites, with specific surface area 150–650 m2/g and sorption volumes 0.1–1.0 cm3/g. It is shown that variation of phase composition and morphology permits to change their structural-adsorption properties and nanocrystallites size after thermal treatment. It is discovered that co-precipitated composite materials differ from core SiO2–shell TiO2 composites by a component interaction degree. It determines the difference of the titan-containing component crystallization process and alteration of their structural-absorption properties after thermal treatment. The results of the tests of composites as photocatalysts for Rhodamine B decomposition reaction, as catalysts of Hantzsch and Biginelli reaction, and as fillers in electrorheological fluids are shown.  相似文献   

7.
Nanoscale composite materials based on the SiO2–TiO2 system were prepared in the form of co-precipitated composites and core SiO2–shell TiO2 composites, with specific surface area 150–650 m2/g and sorption volumes 0.1–1.0 cm3/g. It is shown that variation of phase composition and morphology permits to change their structural-adsorption properties and nanocrystallites size after thermal treatment. It is discovered that co-precipitated composite materials differ from core SiO2–shell TiO2 composites by a component interaction degree. It determines the difference of the titan-containing component crystallization process and alteration of their structural-absorption properties after thermal treatment. The results of the tests of composites as photocatalysts for Rhodamine B decomposition reaction, as catalysts of Hantzsch and Biginelli reaction, and as fillers in electrorheological fluids are shown.  相似文献   

8.
A water‐soluble comonomer, N‐isopropylacrylamide (NIPAM), and an oil‐soluble crosslinker, divinylbenzene (DVB), have been combined in a system for the synthesis of nanocapsules with crosslinked shells through interfacial miniemulsion polymerization by encapsulating a liquid nonsolvating hydrocarbon. Oligomers of poly(N‐isopropylacrylamide) (PNIPAM) were dehydrated and separated from the aqueous phase and were adsorbed by the nanodroplets or latex particles and then anchored at their interfaces by means of a crosslinking reaction. Nanocapsules were then formed through encapsulation of the hydrocarbon by the newly produced polymers at the interfaces of the droplets. The crosslinked structure gradually grew to stabilize the shell morphology. The incorporation of NIPAM into the shell copolymers has been verified by FTIR and solid‐state 13C NMR data. The fact that the number of nanocapsules increases with increasing amounts of DVB and NIPAM supports the formation of nanocapsules following interfacial (co)polymerization. Therefore, a mechanism for the formation of nanocapsules through interfacial (co)polymerization induced by NIPAM and DVB is proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1522–1534, 2009  相似文献   

9.
The use of magnetic latex particles as solid support in biomedical applications is favourable when homogeneous and well-defined core–shell polymer particles are used. Accordingly, this paper concerns with the synthesis of magnetic poly(styrene–divinylbenzene) latex particles using emulsion polymerization of styrene (St) and divinylbenzene (DVB) monomers in the presence of preformed oil in water organic ferrofluid emulsion droplets as seed. The key parameters which affect on formation and morphology of the prepared magnetic latexes were investigated, including type of magnetic emulsion, St/DVB monomers ratio, DVB amount, type of initiator and surfactant nature. In this study, two different magnetic emulsions were used, low and high octane content magnetic emulsions. The magnetic emulsions were stabilized using different types of surfactants including AP, Triton X 405 and SDS. In addition, four different initiators, including AIBN, V50, ACPA and KPS were examined. The morphology of the prepared magnetic latexes was investigated using transmission electron microscopy. In addition, particle size and size distribution, magnetic content and magnetic properties of the prepared magnetic latexes were also examined, using various techniques, e.g. dynamic light scattering, thermal gravimetric analysis and vibrating sample magnetometer, respectively. The results showed that the morphology type (Janus like, moon like and/or core–shell) of the prepared magnetic latex particles could be controlled depending mainly on the used formulation. In fact, the use of styrene monomer leads to anisotropic morphology. Whereas, the progressive use of DVB in presence of KPS intiator leads to a well-defined magnetic core and polymer shell structure.
Figure
  相似文献   

10.
In order to develop the seeded dispersion polymerization technique for the production of micron-sized monodispersed core/shell composite polymer particles the effect of polymerization temperature on the core/shell morphology was examined. Micron-sized monodispersed composite particles were produced by seeded dispersion polymerizations of styrene with about 1.4-μm-sized monodispersed poly(n-butyl methacrylate) (Pn-BMA) and poly(i-butyl methacrylate) (Pi-BMA) particles in a methanol/water (4/1, w/w) medium in the temperature range from 20 to 90 °C. The composite particles, PBMA/polystyrene (PS) (2/1, w/w), consisting of a PBMA core and a PS shell were produced with 2,2′-azobis(4-methoxy-2,4-dimethyl valeronitrile) initiator at 30 °C for Pn-BMA seed and with 2,2′-azobis(isobutyronitrile) initiator at 60 °C for Pi-BMA seed. The polymerization temperatures were a little above the glass-transition temperatures (T g) of both Pn-BMA (20 °C) and Pi-BMA (40 °C). On the other hand, when the seeded dispersion polymerizations were carried out at much higher temperatures than the T g of the seed polymers, composite particles having a polymeric oil-in-oil structure were produced. Received: 14 October 1998 Accepted in revised form: 2 June 1999  相似文献   

11.
Hyperbranched aryl polycarbonates were prepared via the polymerizations of A2B and AB2 monomers, which involved the condensation of chloroformate (A) functionalities with tert‐butyldimethylsilyl‐protected phenols (B), facilitated by reactions with silver fluoride. The polymerization of the A2B monomer gave hyperbranched polycarbonates bearing fluoroformate chain ends, which were hydrolyzed to phenolic chain‐end moieties and further elaborated to tert‐butyldimethylsilyl ether groups. The polymerization of the AB2 monomer gave tert‐butyldimethylsilyl ether‐terminated hyperbranched polycarbonates. The polymerizations were conducted at 23–70 °C in 20% acetonitrile/tetrahydrofuran in the presence of a stoichiometric excess of silver fluoride for 20–40 h to afford hyperbranched polycarbonates with weight‐average molecular weights exceeding 100,000 Da and polydispersity indices of typically 2–3. The degrees of branching were determined by a reductive degradation procedure followed by high‐performance liquid chromatography. Alternatively, the degrees of branching were measurable by solution‐state 1H NMR analyses and agreed with the statistical 50% branching expected for the polymerization of A2B and AB2 monomers not experiencing constructive or destructive electronic effects on the reactivity of the multiple functional groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 823–835, 2002; DOI 10.1002/pola.10167  相似文献   

12.
A novel antimicrobial nanohybrid based on near‐infrared (NIR) photothermal conversion is designed for bacteria capture, separation, and sterilization (killing). Positively charged magnetic reduced graphene oxide with modification by polyethylenimine (rGO–Fe3O4–PEI) is prepared and then loaded with core–shell–shell Au–Ag–Au nanorods to construct the nanohybrid rGO–Fe3O4–Au–Ag–Au. NIR laser irradiation melts the outer Au shell and exposes the inner Ag shell, which facilitates controlled release of the silver shell. The nanohybrids combine physical photothermal sterilization as a result of the outer Au shell with the antibacterial effect of the inner Ag shell. In addition, the nanohybrid exhibits high heat conductivity because of the rGO and rapid magnetic‐separation capability that is attributable to Fe3O4. The nanohybrid provides a significant improvement of bactericidal efficiency with respect to bare Au–Ag–Au nanorods and facilitates the isolation of bacteria from sample matrixes. A concentration of 25 μg mL?1 of nanohybrid causes 100 % capture and separation of Escherichia coli O157:H7 (1×108 cfu mL?1) from an aqueous medium in 10 min. In addition, it causes a 22 °C temperature rise for the surrounding solution under NIR irradiation (785 nm, 50 mW cm?2) for 10 min. With magnetic separation, 30 μg mL?1 of nanohybrid results in a 100 % killing rate for E. coli O157:H7 cells. The facile bacteria separation and photothermal sterilization is potentially feasible for environmental and/or clinical treatment.  相似文献   

13.
Comparative studies of nanocarbons and nanocarbon-in-silica adsorbents for the immobilization of enzymes, for example, thermostable lipase from Thermomyces lanuginosus, were performed. Carbon nanotubes (CNTs) with different diameters, specific surface areas, and concentrations of surface carboxy groups were studied as the nanocarbon adsorbents. The nanocarbon-in-silica adsorbents were prepared by the synthesis of carbon nanofibers (CNFs) in SiO2 xerogel in the course of the pyrolysis of C3-C4 alkanes on Ni catalysts; their physicochemical and textural characteristics were studied by thermal analysis, scanning electron microscopy, and nitrogen porosimetry. It was found that carbon nanofibers of different diameters were synthesized in the bulk of a silica matrix only at Ni contents higher than 1–1.5%. The CNFs-in-silica supports were nanoporous: the mean pore diameter and the specific surface area were ~10 nm and 250–300 m2/g, respectively. The heterogeneous biocatalysts prepared by the adsorption of thermostable lipase on the CNTs and CNFs-in-silica supports were investigated in the reaction of triglyceride (tributyrine) hydrolysis; the physicochemical properties of biocatalysts and their enzymatic activity and stability were studied depending on the hydrophobicity-hydrophilicity of the support/matrix.  相似文献   

14.
1-(2-methoxy phenyl) piperazine fragment of WAY100635 or its phenolic analogue, derived from DWAY is used to design the desired structure of 5HT1A receptor imaging agents. In this study a DWAY analogue was labeled with 99mTc-nitrido ([99mTcN]2+) core via dithiocarbamate. 2-(piperazin-1-yl) phenol dithiocarbamate was synthesized by the reaction of 2-(piperazin-1-yl) phenol with an equivalent amount of carbon disulfide in KOH solution then radiolabeled with 99mTc-nitrido core. The final complex was characterized by HPLC and its radiochemical purity was more than 90 %. In vitro stability studies have shown the complex was stable at least 4 h after labeling at room temperature. The n-octanol/water partition coefficient experiment demonstrated log p = 1.34 for 99mTcN–OHPP–DTC. Biodistribution results showed that radio tracer had moderate brain uptake (0.39 ± 0.03 %ID/g at 15 min and 0.29 ± 0.02 %ID/g at 120 min) and good retention, suggesting that this complex may lead to a further development of a radiotracer with specific binding to 5-HT1A receptor.  相似文献   

15.
Magnetic poly(methyl methacrylate) (PMMA)/poly(methyl methacrylate‐co‐methacrylic acid) [P(MMA–MAA)] composite polymer latices were synthesized by two‐stage soapless emulsion polymerization in the presence of magnetite (Fe3O4) ferrofluids. Different types and concentrations of fatty acids were reacted with the Fe3O4 particles, which were prepared by the coprecipitation of Fe(II) and Fe(III) salts to obtain stable Fe3O4 ferrofluids. The Fe3O4/polymer particles were monodisperse, and the composite polymer particle size was approximately 100 nm. The morphology of the magnetic composite polymer latex particles was a core–shell structure. The core was PMMA encapsulating Fe3O4 particles, and the shell was the P(MMA–MAA) copolymer. The carboxylic acid functional groups (COOH) of methacrylic acid (MAA) were mostly distributed on the surface of the composite polymer latex particles. Antibodies (anti‐human immunoglobulin G) were then chemically bound with COOH groups onto the surface of the magnetic core–shell composite latices through the medium of carbodiimide to form the antibody‐coated magnetic latices (magnetic immunolatices). The MAA shell composition of the composite latex could be adjusted to control the number of COOH groups and thus the number of antibody molecules on the magnetic composite latex particles. With a magnetic sorting device, the magnetic immunolatices derived from the magnetic PMMA/P(MMA–MAA) core–shell composite polymer latex performed well in cell‐separation experiments based on the antigen–antibody reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1342–1356, 2005  相似文献   

16.
We present a facile access route to hydroxy‐functional narrow disperse microspheres of well‐defined grafting density (GD). Ethylene oxide has been grafted from highly crosslinked poly(divinyl benzene) microspheres by anionic ring‐opening polymerization using sec‐butyllithium as activator together with the phosphazene base t‐BuP4. Initially, core microspheres have been prepared by precipitation polymerization utilizing divinyl benzene (DVB, 80 wt.‐%). The grafting of poly(ethylene oxide) (PEO) from the surface resulted in the formation of functional core–shell microspheres with hydroxy‐terminal end groups. The number average particle diameter of the grafted microspheres was 3.6 µm and the particle weight increased by 5.7%. The microspheres were characterized by SEM, FT‐IR spectroscopy, elemental analysis, and fluorescence microscopy. The surface GD (determined via two methods) was 1.65 ± 0.06 and 2.09 ± 0.08 chains · nm−2, respectively.

  相似文献   


17.
18.
The spectrophotometric study of the complexation reaction between 5,5′methylenedisalicylhydroxamic acid and V(V) shows that two complexes are formed, the 1:1 (? = 5100 liters mol?1 cm?1 at 490 nm, log Kest = 5.8 ± 0.1) and the 1:2 (L:V) (? = 6250 liters mol?1 cm?1 at 600 nm, log Kest = 6.1 ± 0.1). A spectrophotometric method is developed for the determination of vanadium (2–9 ppm) at 2 N HCl and 495 nm, which allows its determination in petroleum crude oils with a series of advantages over the ASTM D-1548-63 method.  相似文献   

19.
Residual vinyl groups in macroporous monosized polymer particles of poly(meta‐DVB) and poly(para‐DVB) prepared with toluene and 2‐EHA as porogens have been reacted with aluminum chloride as Friedel–Crafts catalyst with and without the presence of lauroyl chloride. In the reaction between aluminum chloride and pendant vinyl groups a post‐crosslinking by cationic polymerization takes place. A reaction occurring simultaneously is the addition of HCl to the double bonds. The progress of these reactions was studied by characterization of vinyl group conversion, pore size distribution, specific surface area, morphology, and swelling behavior. In the reaction with aluminum chloride the poly(para‐DVB) particles showed a substantially higher conversion of pendant vinyl groups than the particles made of poly(meta‐DVB) independent of porogen type. The reaction with aluminum chloride led to a reduced swelling in organic solvents and an increased rigidity of the particles prepared with toluene as porogen. This is confirmed by an increase in the total pore volume in the dry state and a change in the pore size distribution of these particles. Also in the reaction with lauroyl chloride poly(para‐DVB) particles have shown a higher conversion of pendant vinyl groups than poly(meta‐DVB) particles and the acylation was almost complete at the early stage of the reaction. The swelling in organic solvents is reduced as a result of the incorporation of acyl groups into the particles prepared with toluene as porogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1366–1378, 2000  相似文献   

20.
Macroporous functionalized polymer beads of poly(4‐vinylpyridine‐co‐1,4‐divinylbenzene) [P(VPy‐co‐DVB)] were prepared by a multistep polymerization, including a polystyrene (PS) shape template by emulsifier‐free emulsion polymerization, linear PS seeds by staged template suspension polymerization, and macroporous functionalized polymer beads of P(VPy‐co‐DVB) by multistep seeded polymerization. The polymer beads, having a cellular texture, were made of many small, spherical particles. The bead size was 10–50 μm, and the pore size was 0.1–1.5 μm. The polymer beads were used as supports for zirconocene catalysts in ethylene polymerization. They were very different from traditional polymer supports. The polymer beads could be exfoliated to yield many spherical particles dispersed in the resulting polyethylene particles during ethylene polymerization. The influence of the polymer beads on the catalytic behavior of the supported catalyst and morphology of the resulting polyethylene was investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 873–880, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号