首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ru(II) polypyridine species have been assembled about dirhodium(II, II) tetracarboxylate cores. The complexes prepared have general formulas [{(terpy)Ru(La)}n{Rh2(CH3COO)4-n(CH3CN)2}]2n+ (a-type compounds: terpy = 2,2':6',2' '-terpyridine; La = 4'-(p-carboxyphenyl)-2,2':6',2' '-terpyridine; n = 1, 1a; n = 2, cis-2a and trans-2a-cis and trans refer to the arrangement of the Ru(II) species around the dirhodium core; n = 3, 3a), [{(Lb)Ru(La)}n{Rh2(CH3COO)4-n(CH3CN)2}]2n+ (b-type compounds: Lb = 6-phenyl-2,4-di(2-pyridyl)-s-triazine; n = 1, 1b; n = 2, an inseparable mixture of cis-2b and trans-2b; n = 3, 3b; n = 4, 4b), and [{(terpy)Ru(Lc)}{Rh2(CH3COO)3(CH3CN)2}]2+ (1c; Lc = 6-(p-carboxyphenyl)-2,4-di(2-pyridyl)-s-triazine). As model species, also the mononuclear [(terpy)Ru(La)]2+ (5a), [(La)Ru(Lb)]2+ (5b), and [(terpy)Ru(Lc)]2+ (5c) have been prepared. All of the complexes have been characterized by several techniques, including NMR and mass spectra, and the stability of the various species is discussed. The absorption spectra of all of the compounds are dominated by the Ru(II) polypyridine moieties, showing intense ligand-centered (LC) bands in the UV region and intense metal-to-ligand charge-transfer (MLCT) bands in the visible. The compounds exhibit several metal-centered oxidation and ligand-centered reduction processes, which have been assigned to specific subunits. Both absorption and redox data indicate a supramolecular nature of the assembled systems. Efficient energy transfer from the MLCT triplet state of the Ru-based components to the lowest-energy excited state of the dirhodium core takes place for the a-type compounds at 298 K in acetonitrile solution, whereas such a process is inefficient for the b-type and c-type species, which exhibit the typical MLCT emission. At 77 K in butyronitrile matrix, Ru-to-Rh2 energy transfer is partly efficient for both the a-type and the b-type compounds and is inefficient for 1c. The reasons for such behavior are discussed by taking into account arguments concerning the driving force and reorganization energy of the complexes.  相似文献   

2.
Hu YZ  Xiang Q  Thummel RP 《Inorganic chemistry》2002,41(13):3423-3428
A series of four biphen (phen = 1,10-phenanthroline) ligands, 2,2'-biphen (1), 3,3'-biphen (2), 2,2'-dimethylene-3,3'-biphen (3), and 2,3'-dimethylene-3,2'-biphen (4), is prepared by coupling and Friedl?nder methodology. The corresponding mononuclear Ru(II) complexes, [Ru(1-4)(Mebpy)(2)](2+) where Mebpy = 4,4'-dimethyl-2,2'-bipyridine, are prepared. These complexes show long wavelength electronic absorptions at 441-452 nm and emissions at 622-641 nm. Metal-based oxidations occur in the range 1.18-1.21 V, and ligand-based reductions, at -1.20 to -1.30 V. The addition of Zn(2+), Cd(2+), or Hg(2+) ions results in a strong enhancement and red shift of the luminescence of complex Ru-3. Alkali and alkaline earth metal ions barely affect the luminescence of Ru-3 while transition metal ions such as Co(2+), Cu(2+), Ni(2+), and Mn(2+) lead to efficient quenching of the Ru-3 luminescence. The luminescence of Ru-2 and Ru-4 is quenched in the presence of Zn(2+) because of a conformationally induced reduction in electronic communication between the two phen halves of the ligand. The addition of Zn(2+) has only a slight effect on the luminescence of Ru-1 because of steric hindrance toward complexation.  相似文献   

3.
rac-Bis[{(diphenylphosphino)ethyl}-phenylphosphino]methane (DPPEPM) reacts with iron(II) and ruthenium(II) halides to generate complexes with folded DPPEPM coordination. The paramagnetic, five-coordinate Fe(DPPEPM)Cl(2) (1) in CD(2)Cl(2) features a tridentate binding mode as established by (31)P{(1)H} NMR spectroscopy. Crystal structure analysis of the analogous bromo complex, Fe(DPPEPM)Br(2) (2) revealed a pseudo-octahedral, cis-α geometry at iron with DPPEPM coordinated in a tetradentate fashion. However, in CD(2)Cl(2) solution, the coordination of DPPEPM in 2 is similar to that of 1 in that one of the external phosphorus atoms is dissociated resulting in a mixture of three tridentate complexes. The chloro ruthenium complex cis-Ru(κ(4)-DPPEPM)Cl(2) (3) is obtained from rac-DPPEPM and either [RuCl(2)(COD)](2) [COD = 1,5-cyclooctadiene] or RuCl(2)(PPh(3))(4). The structure of 3 in both the solid state and in CD(2)Cl(2) solution features a folded κ(4)-DPPEPM. This binding mode was also observed in cis-[Fe(κ(4)-DPPEPM)(CH(3)CN)(2)](CF(3)SO(3))(2) (4). Addition of an excess of CO to a methanolic solution of 1 results in the replacement of one of the chloride ions by CO to yield cis-[Fe(κ(4)-DPPEPM)Cl(CO)](Cl) (5). The same reaction in CH(2)Cl(2) produces a mixture of 5 and [Fe(κ(3)-DPPEPM)Cl(2)(CO)] (6) in which one of the internal phosphines has been substituted by CO. Complexes 2, 3, 4, and 5 appear to be the first structurally characterized monometallic complexes of κ(4)-DPPEPM.  相似文献   

4.
Novel complexes 1 and 2 based on N-heterocyclic carbenes, which are analogous to Ru(bpy)(3)(2+) and Ru(terpy)(2)(2+), respectively, were synthesized. The complex, which is analogous to Ru(terpy)(2)(2+), exhibited promising photoluminescence properties with a long lifetime of 820 ns in acetonitrile and 3100 ns in water at room temperature, respectively. In addition, ab initio calculations were carried out.  相似文献   

5.
A series of ruthenium complexes having the general form [Ru(bpy)(3-n)(CN-Me-bpy)(n)](PF(6))(2) (where bpy = 2,2'-bipyridine, CN-Me-bpy = 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine, and n = 1-3 for complexes 1-3, respectively) have been synthesized and characterized using a variety of steady-state and nanosecond time-resolved spectroscopies. Electrochemical measurements indicate that the CN-Me-bpy ligand is significantly easier to reduce than the unsubstituted bipyridine (on the order of ~500 mV), implying that the lowest energy (3)MLCT (metal-to-ligand charge transfer) state will be associated with the CN-Me-bpy ligand(s) in all three compounds. Comparison of the Huang-Rhys factors derived from spectral fitting analyses of the steady state emission spectra of complexes 1-3 suggests all three compounds are characterized by excited-state geometries that are less distorted relative to their ground states as compared to [Ru(bpy)(3)](PF(6))(2); the effect of the more nested ground- and excited-state potentials is reflected in the unusually high radiative quantum yields (13% (1), 27% (2), and 40% (3)) and long (3)MLCT-state room-temperature lifetimes (1.6 μs, 2.6 μs, and 3.5 μs, respectively) for these compounds. Coupling of the π* system into the CN groups is confirmed by nanosecond step-scan IR spectra which reveal a ~40 cm(-1) bathochromic shift of the CN stretching frequency, indicative of a weaker CN bond in the (3)MLCT excited state relative to the ground state. The fact that the shift is the same for complexes 1-3 is evidence that, in all three complexes, the long-lived excited state is localized on a single CN-Me-bpy ligand rather than being delocalized over multiple ligands.  相似文献   

6.
We have developed and optimized a well-controlled and refined methodology for the synthesis of substituted π-conjugated 4,4'-styryl-2,2'-bipyridine ligands and also adapted the tris(heteroleptic) synthetic approach developed by Mann and co-workers to produce two new representative Ru(II)-based complexes bearing the metal oxide surface-anchoring precursor 4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine. The two targeted Ru(II) complexes, (4,4'-dimethyl-2,2'-bipyridine)(4,4'-di-tert-butyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dtbbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (1) and (4,4'-dimethyl-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dnbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (2) were obtained as analytically pure compounds in high overall yields (>50% after 5 steps) and were isolated without significant purification effort. In these tris(heteroleptic) molecules, NMR-based structural characterization became nontrivial as the coordinated ligand sets each sense profoundly distinct magnetic environments greatly complicating traditional 1D spectra. However, rational two-dimensional approaches based on both homo- and heteronuclear couplings were readily applied to these structures producing quite definitive analytical characterization and the associated methodology is described in detail. Preliminary photoluminescence and photochemical characterization of 1 and 2 strongly suggests that both molecules are energetically and kinetically suitable to serve as sensitizers in energy-relevant applications.  相似文献   

7.
8.
《Comptes Rendus Chimie》2003,6(8-10):883-893
Dendrimers based on Ru(II) and Os(II) polypyridine complexes as building blocks and 2,3–dpp (2,3–dpp = 2,3–bis(2′–pyridyl)pyrazine) as bridging ligands are presented and their properties as light-harvesting antenna systems are illustrated. The dendrimers exhibit a huge absorption in the visible region and energy migration patterns whose direction and efficiency depend on the synthetically determined topography of the systems. New recent developments are also discussed, with particular regard towards ultrafast energy transfer processes and long-range electron transfer within the dendritic arrays. To cite this article: S. Serroni et al., C. R. Chimie 6 (2003).  相似文献   

9.
Several dendritic bridging ligands were designed and synthesized to develop more sensitive and efficient electrochemiluminescent (ECL) polynuclear Ru(II) complexes. Various types of novel two-armed, four-armed and six-armed tris(bipyridyl)ruthenium core dendrimers were synthesized by coordinating dendritic polybipyridyl ligands with Ru(II) complexes, and the effect of the ligand and the dendritic network on the ECL characteristics were studied. Their electrochemical redox potentials, UV, photoluminescence (PL), and relative ECL intensities were also investigated in detail. The synthesized metallodendrimers exhibited strong metal-to-ligand charge transfer (MLCT) absorption at 428-451 nm and emission at 591-601 nm. Most of the newly synthesized metallodendrimers showed enhanced ECL intensities compared to the reference complex, [Ru(o-phen)3](PF6)2. In particular, the ECL intensities of the six-armed heptanuclear ruthenium complexes were almost four times greater than that of [Ru(o-phen)3]2+. These metallodendrimers could be utilized as efficient ECL materials and light emitting devices.  相似文献   

10.
Pedro Ramiro 《Tetrahedron》2005,61(40):9478-9483
In the context of our studies on ruthenium(II) complexes containing polyazaheterocyclic ligands as functionalised photosensitisers for singlet molecular oxygen generation in heterogeneous phase, we describe the synthesis and spectroscopic characterisation of different amide-functionalised N-1,10-phenanthrolin-5-ylalkylamides. These chelators are used to obtain heteroleptic [Ru(phen)2L]2+ complexes, where L stands for 2-iodo-N-1,10-phenanthrolin-5-ylacetamide (5-iap), 4-oxo-4-(1,10-phenanthrolin-5-ylamino)butanoic acid (5-suap), 5-oxo-5-(1,10-phenanthrolin-5-ylamino)pentanoic acid (5-glap) and tert-butyl 4-oxo-4-(1,10-phenanthrolin-5-ylamino)butylcarbamate (BOC-5-ngap). The spectroscopic data, excited state lifetimes and quenching rate constants with O2 (ca. 3.7×109 L mol−1 s−1) of these novel complexes are also reported.  相似文献   

11.
A series of cyclic lipophilic polyamines: 1,4,7-triethyl-1,4,7-triazacyclodecane, 1,4,7-triethyl-1,4,7-triazacycloundecane, 1,4,7-trimethyl-1,4,7-triazacycloundecane, and 1,4,8-triisopropyl-1,4,8-triazacycloundecane, as well as their complexes with dimethylplatinum(II) were synthesized for the first time. Features of complex formation of triazacyclanes with platinum and their manifestation in NMR spectra were discussed.  相似文献   

12.
A series of Ru(II)-peptide nucleic acid (PNA)-like monomers, [Ru(bpy)(2)(dpq-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(dpq-L-PNA-OH)](2+) (M2), [Ru(bpy)(2)(dppz-L-PNA-OH)](2+) (M3), and [Ru(phen)(2)(dppz-L-PNA-OH)](2+) (M4) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dpq-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl)methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-a:2',3'-c]phenazine-11-carboxamido)hexanamido)acetic acid, dppz-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl) methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-f:2',3'-h]quinoxaline-2-carboxamido)acetic acid) have been synthesized and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, and elemental analysis. As is typical for Ru(II)-tris(diimine) complexes, acetonitrile solutions of these complexes (M1-M4) show MLCT transitions in the 443-455 nm region and emission maxima at 618, 613, 658, and 660 nm, respectively, upon photoexcitation at 450 nm. Changes in the ligand environment around the Ru(II) center are reflected in the luminescence and electrochemical response obtained from these monomers. The emission intensity and quantum yield for M1 and M2 were found to be higher than for M3 and M4. Electrochemical studies in acetonitrile show the Ru(II)-PNA monomers to undergo a one-electron redox process associated with Ru(II) to Ru(III) oxidation. A positive shift was observed in the reversible redox potentials for M1-M4 (962, 951, 936, and 938 mV, respectively, vs Fc(0/+) (Fc = ferrocene)) in comparison with [Ru(bpy)(3)](2+) (888 mV vs Fc(0/+)). The ability of the Ru(II)-PNA monomers to generate electrochemiluminescence (ECL) was assessed in acetonitrile solutions containing tripropylamine (TPA) as a coreactant. Intense ECL signals were observed with emission maxima for M1-M4 at 622, 616, 673, and 675 nm, respectively. At an applied potential sufficiently positive to oxidize the ruthenium center, the integrated intensity for ECL from the PNA monomers was found to vary in the order M1 (62%) > M3 (60%) > M4 (46%) > M2 (44%) with respect to [Ru(bpy)(3)](2+) (100%). These findings indicate that such Ru(II)-PNA bioconjugates could be investigated as multimodal labels for biosensing applications.  相似文献   

13.
A series of four polypyridyl Ru(II) complexes such as [Ru(L)4(PIP)]2+ and [Ru(L)4PPIP]2+ where L is 4-amino pyridine and Pyridine (PIP?=?2-phenylimidazo[4,5-f] [1, 10] phenanthroline), (PPIP?=?2-(4??-phenoxy-phenyl) imidazo[4,5-][1, 10]phenanthroline) have been synthesized and characterized by elemental analysis, physicochemical methods such as UV?Cvis, IR and NMR spectroscopic techniques. The DNA-binding behavior of these complexes was investigated by electronic absorption titrations, fluorescence spectroscopy, viscosity measurements and salt-dependent studies. The experimental results indicate that all these complexes can bind to DNA through an intercalation mode, the DNA-binding affinities of these complexes follow the order [Ru(4-APy)4(PPIP)]2+(1)?>?[Ru(Py)4PPIP]2+(2)?>?[Ru(4-APy)4(PIP)]2+(3)?>?[Ru(Py)4PIP]2+(4). Noticeably, these complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA. Further, all four complexes screened for their antimicrobial activity indicate that the complexes show appreciable activity against Escherichia coli and Neurospora Crassa. In addition, in the presence of Co2+, the emission of DNA-[Ru(L4)PPIP/PIP]2+ can be quenched and recovered by the addition of EDTA, which exhibited the DNA ??light switch?? properties.  相似文献   

14.
A new series of ruthenium(II) N-heterocyclic carbene complexes [RuL1,2,3(p-cymene)Cl2] (3a–c) (where L is a N-heterocyclic carbene), have been synthesized via transmetalation. The new ruthenium(II)-NHC complexes were applied to transfer hydrogenation of acetophenone derivatives and aldehydes using 2-propanol as a hydrogen source and KOH as a co-catalyst. The results show that the corresponding alcohols could be obtained in good yield with high catalyst activity (up to 100%) under mild conditions. [RuL1(p-cymene)Cl2] (3a) is much more active than the other complexes in transfer hydrogenation. Reactions, catalyzed by 3a–c, showed the highest reaction rates and yields of alcohol when the substrates bear more electron-withdrawing substituents. All new compounds were characterized by IR, elemental analysis, LC–MS (ESI), and NMR spectroscopy.  相似文献   

15.
In search of potential anticancer drug candidates in ruthenium complexes, a series of mononuclear ruthenium complexes of the type [Ru(phen)(2)(nmit)]Cl(2) (Ru1), [Ru(bpy)(2)(nmit)]Cl(2) (Ru2), [Ru(phen)(2)(icpl)]Cl(2) (Ru3), Ru(bpy)(2)(icpl)]Cl(2) (Ru4) (phen=1,10-phenanthroline; bpy=2,2'-bipyridine; nmit=N-methyl-isatin-3-thiosemicarbazone, icpl=isatin-3-(4-Cl-phenyl)thiosemicarbazone) and [Ru(phen)(2)(aze)]Cl(2) (Ru5), [Ru(bpy)(2)(aze)]Cl(2) (Ru6) (aze=acetazolamide) and [Ru(phen)(2)(R-tsc)](ClO(4))(2) (R=methyl (Ru7), ethyl (Ru8), cyclohexyl (Ru9), 4-Cl-phenyl (10), 4-Br-phenyl (Ru11), and 4-EtO-phenyl (Ru12), tsc=thiosemicarbazone) were prepared and characterized by elemental analysis, FTIR, (1)H-NMR and FAB-MS. Effect of these complexes on the growth of a transplantable murine tumor cell line (Ehrlich Ascites Carcinoma) and their antibacterial activity were studied. In cancer study the effect of hematological profile of the tumor hosts have also been studied. In the cancer study, the complexes Ru1-Ru4, Ru10 and Ru11 have remarkably decreased the tumor volume and viable ascitic cell count as indicated by trypan blue dye exclusion test (p<0.05). Treatment with the ruthenium complexes prolonged the lifespan of Ehrlich Ascites Carcinoma (EAC) bearing mice. Tumor inhibition by the ruthenium chelates was followed by improvements in hemoglobin, RBC and WBC values. All the complexes showed antibacterial activity, except Ru5 and Ru6. Thus, the results suggest that these ruthenium complexes have significant antitumor property and antibacterial activity. The results also reflect that the drug does not adversely affect the hematological profiles as compared to that of cisplatin on the host.  相似文献   

16.
A new series of mercaptopyrimidine Ru(III) complexes were synthesized and characterized using various spectral techniques like single‐crystal X‐ray diffraction, Fourier transform infrared and NMR spectroscopies, thermogravimetric analysis and energy‐dispersive X‐ray analysis. The complexes were evaluated for their pharmacological activities like in vitro antimicrobial, anticancer, antituberculosis and antioxidant activities. The DNA binding of the complexes was investigated by absorption and emission spectral measurements which indicated that the complexes bind to DNA via intercalation, with molecular docking studies validating the results. DNA cleavage studies of the complexes were carried out.  相似文献   

17.
Abstract

Two new ferrocenyl iminopyridyl ligands, L1 and L2, have been synthesized and characterized using spectroscopic and analytical techniques. Both ligands were used to prepare new Rh(I) and Ru(II) ferrocenyl complexes 14. The structures of the complexes were confirmed using 1H and 13C nuclear magnetic resonance spectroscopy, high resolution electrospray ionization mass spectrometry, and infrared spectroscopy. The complexes were tested as catalysts in the hydroformylation of 1-octene. Rh ferrocenyl complexes 1 and 4 produced aldehydes under mild conditions while the Ru-ferrocenyl complexes 2 and 3 required higher temperature and pressure for effective hydroformylation to occur. The catalysts display excellent aldehyde chemoselectivity with varying regeoselectivity depending on temperature and pressure conditions employed. At high temperatures, the Rh ferrocenyl precatalysts favor formation of branched aldehydes due to increased isomerization at high temperatures. The Ru ferrocenyl precatalysts displayed less hydroformylation activity; however, the complexes show good chemoselectivity for aldehydes with no hydrogenation products formed.  相似文献   

18.
A series of Ru(acac)24-diene) complexes containing cis- and trans-diene coordination have been investigated by cyclic voltammetry to correlate structural bonding and conformation patterns of diene ligands with redox behaviors. The solid-state structure of Ru(acac)2(2,3-dimethyl-1,3-butadiene) has been determined by single crystal X-ray diffraction methods. Ru(acac)2(2,3-dimethyl-1,3-butadiene) crystallizes in the monoclinic space group C2/c with a = 12.368(2) Å, b = 17.0600(2) Å, c = 16.0110(2) Å, β = 98.4405(10)° and V = 3341.38(10) Å3 for Z = 8. A structural comparison between several Ru-trans4-diene complexes and Ru-η4-1,3-cyclohexadiene revealed no difference in the Ru-C(diene) bond distances. However, through cyclic voltammetry experiments these species demonstrated different redox behavior, as function of the coordinated diene ligand.  相似文献   

19.
Hydrolysis of 1,10-phenanthrolinopyrrole ethyl ester leads to the acid derivative which is unstable at room-temperature releasing CO(2) and forming 1,10-phenanthrolinopyrrole (php). The ligand reacts with ruthenium(II) to form a series of complexes of the general formula [Ru(php)(n)(bpy)(3-n)](2+), where bpy = 2,2'-bipyridine and n = 1-3. The photochemical properties reveal that the complexes have longer-lived excited states than the standard complex, [Ru(bpy)(3)](2+). Their emission lifetimes range from 9.04 micros (n = 1) to 35.5 micros (n = 3) at 77 K compared to 7.57 micros for the standard. Similarly, at room-temperature, emission lifetimes range from 1.20 micros (n = 1) to 1.70 micros (n = 3) relative to the standard (0.56 micros). The emission quantum yields also have higher values than the standard [Ru(bpy)(3)](2+) under similar conditions. The temperature-dependent studies for the complexes establish the distribution among the radiative, nonradiative, and (3)MLCT to (3)d-d decay channels and are in agreement with the energy gap law.  相似文献   

20.
A ligand ipdp (ipdp?=?indeno[1′,2′?:?5,6]pyrazino[2,3-i]dipyrido[3,2-a?:?2′,3′-c]phenazine-8-one) and its ruthenium complexes, [Ru(L)2(ipdp)]2+ (L?=?bpy (2,2′-bipyridine), phen (1,10-phenanthroline)), have been synthesized and characterized by elemental analysis, electrospray mass spectra, and 1H NMR. The interaction between the complexes and calf thymus DNA (CT-DNA) has been investigated by spectroscopic methods and viscosity measurements. The results indicate that the complexes can bind to CT-DNA in an intercalative mode. In addition, both complexes promote the photocleavage of plasmid pBR322 DNA under irradiation. The mechanistic studies reveal that singlet oxygen 1O2 plays a significant role in DNA photocleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号