首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
The influence of La and Nd co‐substitution on structure, electric and magnetic properties of epitaxial thin films of BiFeO3 (BFO) was examined. We demonstrate structural phase transition in co‐doped La and Nd BFO thin films using Raman spectroscopy. Based on group theoretical analysis of the number and symmetry of Raman lines, we provide strong experimental evidence that the structure has been changed from rhombohedral to monoclinic due to co‐doping in BFO. The change in structure was also reflected in morphology of these films. Room temperature magnetic hysteresis curves showed that doped films exhibit enhanced ferromagnetic properties with remnant magnetization of ~10 emu/cm3 and coercive field of 1.2 kOe. The enhanced magnetic properties highlight the potential applications of doped BLNFO thin film for smart devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.  相似文献   

3.
The ferroelectric properties of BiFeO3 (BFO) films spray deposited on porous silicon have been studied. The analysis of XRD and FESEM investigations show that the crystalline strain in the BFO films increases with pore size. The BFO films on porous silicon substrate showed improvement in ferroelectric fatigue behavior, remanent polarization and ferroelectric switching time. A maximum memory window of 5.54 V at 1 MHz and a large remanent polarization (Pr) of 13.1 μC/cm2 have been obtained at room temperature. The improvement in the ferroelectric properties of these films has been correlated to the crystalline strain.  相似文献   

4.
The recent discovery of efficient charge separation in tetragonal–rhombohedral (T‐R) polymorphic phase boundaries (PPBs) in strained BiFeO3 (BFO) films is of great interest, and also raised a question of whether the PPBs could enhance the performance of BFO‐based planar photodetectors. To address it, we prepare BFO films with thickness ranging from 8 to 90 nm on the LaAlO3 substrates, in which the BFO evolves from a pure T phase (without PPBs) to a T‐R mixed phase (with PPBs) due to the strain relaxation. Then, we comparatively investigate the photoconductive properties of these BFO films with the planar device geometry. It is found that the photoconductance first increases and then decreases with increasing film thickness. Particularly, the 50‐nm film containing the pure T phase without any detectable PPBs exhibits the highest photoconductance. This unexpected observation can be understood by analyzing the effects of increasing film thickness and associated phase evolution on the photoconduction‐related parameters.  相似文献   

5.
Self-oriented BiFeO3 (BFO) thin films are prepared via chemical solution deposition method with magnetic field in-situ annealing process. The effects of magnetic annealing on the microstructure, magnetic and dielectric properties as well as magnetoelectric coupling effect of the BFO thin films are investigated. With increasing the annealing magnetic field, the crystallization quality, texture, grain boundary connectivity and densification of the films are enhanced, which is attributed to the improvement of connection and diffusion of components. The magnetization of the field-annealing films and dielectric constant as well as remanent polarization increases with increasing the strength of annealing magnetic field. In addition, it is observed that magnetocapacitance value of the magnetic-field-annealing BFO thin film is higher than the non-field-annealing one. Moreover the BFO thin films annealed at 3 kOe magnetic field show the magnetoelectric effect with 4% under 2 kOe at room temperature.  相似文献   

6.
Domain structure of BiFeO3 (BFO) films grown on different substrates, with a conductive La0.7Sr0.3MnO3 underlayer, has been experimentally studied. Two oppositely orientated polarizations, along the long body diagonal to the perovskite unit cell of BFO, are detected in the BFO films on the (0 0 1)-oriented NdGaO3. Electric pulses applied in the [0 0 1] direction produce a polarization switching, resulting in the domain structure characterized by the 109° domain walls. Contrary to the BFO films on NdGaO3, the BFO films on SrTiO3 (0 0 1) exhibit a much complex domain structure. Both 71° and 109° domain walls are possible with a uniform polarization component pointing to the bottom electrode.  相似文献   

7.
Bismuth ferrite, one of a few multiferroics, has attracted much attention for many decades since 1960. BiFeO3 (BFO) belongs to perovskite class of complex oxides. BFO is one of only a few materials in which (anti)ferromagnetism and ferroelectricity coexis in room temperature. Authors prepared BiFeO3 ceramics by solid state reaction method. The synthesized powders were characterized by X-ray diffraction method. Thermogravimetric and differential thermal analysis were investigated. The microstructure of the BFO ceramics was investigated by means of scanning transmission electron microscopy, and the ferroelectric characteristic of BFO ceramics was demonstrated. BFO is very interesting ceramic material for potential applications in the memory devices, sensors, satellite communications, optical filters and smart devices.  相似文献   

8.
In situ Transmission Electron Microscopy (TEM) techniques can potentially fill in gaps in the current understanding interfacial phenomena in complex oxides. Select multiferroic oxide materials, such as BiFeO(3) (BFO), exhibit ferroelectric and magnetic order, and the two order parameters are coupled through a quantum-mechanical exchange interaction. The magneto-electric coupling in BFO allows control of the ferroelectric and magnetic domain structures via applied electric fields. Because of these unique properties, BFO and other magneto-electric multiferroics constitute a promising class of materials for incorporation into devices such as high-density ferroelectric and magnetoresistive memories, spin valves, and magnetic field sensors. The magneto-electric coupling in BFO is mediated by volatile ferroelastically switched domains that make it difficult to incorporate this material into devices. To facilitate device integration, an understanding of the microstructural factors that affect ferroelastic relaxation and ferroelectric domain switching must be developed. In this article, a method of viewing ferroelectric (and ferroelastic) domain dynamics using in situ biasing in TEM is presented. The evolution of ferroelastically switched ferroelectric domains in BFO thin films during many switching cycles is investigated. Evidence of partial domain nucleation, propagation, and switching even at applied electric fields below the estimated coercive field is revealed. Our observations indicate that the occurrence of ferroelastic relaxation in switched domains and the stability of these domains is influenced the applied field as well as the BFO microstructure. These biasing experiments provide a real time view of the complex dynamics of domain switching and complement scanning probe techniques. Quantitative information about domain switching under bias in ferroelectric and multiferroic materials can be extracted from in situ TEM to provide a predictive tool for future device development.  相似文献   

9.
A multiferroics/multiferroics BiFeO3/Bi0.90La0.10Fe0.90Zn0.10O3 (BFO/BLFZO) bilayer was deposited on Pt/TiO2/SiO2/Si substrates by radio frequency sputtering. The BLFZO layer strongly affects the phase purity, orientation growth, and leakage current of BFO layer. The bilayered capacitor exhibits a high dielectric permittivity of ~162 and an improved magnetic behavior of 2Ms ~ 34.6 emu/cm3, together with an excellent fatigue endurance. A remanent polarization of 2Pr ~ 116.2 μC/cm2 for the bilayered capacitor is better than those of reported BFO bilayers. The impedance study indicates that lower freely mobile charges are responsible for the improved electrical behavior of the BFO/BLFZO bilayer. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Effects of the BiFe0.95Mn0.05O3 thickness and a SrRuO3 (SRO) buffer layer on the microstructure and electrical properties of BiFeO3/BiFe0.95Mn0.05O3 (BFO/BFMO) bilayered thin films were investigated, where BFO/BFMO bilayered thin films were fabricated on the SRO/Pt/Ti/SiO2/Si(100) substrate by a radio frequency sputtering. All thin films are of a pure perovskite structure with a mixture of (110) and (111) orientations regardless of the BFMO layer thickness. Dense microstructure is demonstrated in all thin films because of the introduction of BFMO layers. The SRO buffer layer can also further improve the ferroelectric properties of BFO/BFMO bilayered thin films as compared with those of these thin films without a SRO buffer layer. The BFO/BFMO bilayered thin film with a thickness ratio of 220/120 has an enhanced ferroelectric behavior of 2P r??165.23???C/cm2 and 2E c??518.56?kV/cm, together with a good fatigue endurance. Therefore, it is an effective way to enhance the ferroelectric and fatigue properties of bismuth ferrite thin films by constructing such a bilayered structure and using a SRO buffer layer.  相似文献   

11.
Multiferroic BiFeO3 (BFO), Bi1−xScxFeO3 (BSF), and BiFe1−xScxO3 (BFS) (x=0.3 mol%) thin films are prepared on Pt/Ti/SiO2/Si substrates using a sol–gel technique. The effect of Sc substitution along with the annealing ambient (N2 and O2) on the structure, electrical, and magnetic properties of the films are reported. X-ray diffraction (XRD) analysis reveals that the films can be prepared with the single-phase perovskite structure by annealing at 700 °C for 10 min either in O2 or N2 ambient. The unit cell volume increases on the substitution of Sc, which are 61.39, 62.50, and 62.57 (Å)3 for BFO, BSF, and BFS, respectively. X-ray photoelectron spectroscopy (XPS) study reveals that the chemical environments of Bi and Fe are different in BFO, BSF, BFS films. Similarly, XPS spectra for Sc2p lines in BSF and BFS also have different peak positions; this indicates Sc doping has certain chemical impact on BSF and BFS films. Systematic studies of Sc substitution along with the effect of annealing ambient on the dielectric constant (ε) and dielectric loss (tan δ), leakage current, remnant polarization (Pr), coercive field (Ec), and magnetic properties of the films are carried out. The room temperature values of ε and tan δ at 1 kHz for BFO and BFS films annealed in N2 ambient are (∼208; 0.035) and (∼235; 0.023), respectively. The comparative value of leakage current for the BFO and BFS films at an applied field strength of 50 kV/cm are 2.997×10−4 and 1.87×10−5 A/cm2, respectively. Room temperature value of coercive magnetization for BFS films has one order small compared to that of the BFO films; this indicates BFS films are magnetically soft and more suitable for potential device applications. Finally, among the studied compositions, the BFS films annealed in N2 ambient show the best property.  相似文献   

12.
BiFeO3(BFO) thin films of about 200 nm in thickness have been successfully grown on oxide bottom electrode, LaNiO3(LNO), via pulsed laser ablation. X-ray diffraction spectrum of the as-deposited BFO film reveals a (100) preferred textured structure. The morphology of the BFO film is found to be strongly dependent on oxygen partial pressure in laser ablation. A saturated hysteresis loop with remanent polarization of 42 μC/cm2 and coercive field of 100 kV/cm is obtained at the film deposition at 50 mTorr. The dielectric properties have also been obtained based on the influence of the oxygen pressure.  相似文献   

13.
《Current Applied Physics》2018,18(12):1473-1479
Recently multiferroic materials have attract great interest for the applications on memorial, spintronic and magneto-electric sensor devices for their spontaneous magneto-electric coupling properties. Research and development of the various kinds of multiferroics are indispensable factor for a new generation multifunctional materials. In this research, mechanical, electronic, magnetic and nonlinear optical properties of La modified BiLaFe2O6 (BLFO) and Mn modified Bi2FeMnO6 (BFMO) were studied as new members of multiferroic BiFeO3 (BFO) series by first-principles calculations, and compared with the pure BFO to discover the optimized properties. Our results show that BLFO and BFMO have good mechanical stability as revealed by elastic constants that satisfy the stability criteria. All these compounds exhibit anisotropic and ductile nature. The enhanced properties by La and Mn substitution, such as increased hardness, improved magnetism, decreased band gap and comparable second harmonic generation responses reveal that the new multiferroic members of BLFO and BFMO would get wider application than their BFO counterpart. Our study is expected to providing an appropriate mechanical reference data as guidance for engineering of high efficiency multifunctional devices with the BFO series.  相似文献   

14.
The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.  相似文献   

15.
赵润  杨浩 《物理学报》2018,67(15):156101-156101
精确调控ABO_3钙钛矿结构中氧空位的位置与浓度已被证明可调控多铁性薄膜的不同物理性质,包括输运特性、光学特性和多铁性质等.本文回顾了多种典型的多铁性材料,从氧空位形成机理、氧八面体结构、应变-氧空位关系和具体物性调控效应(多铁、超导和电化学性能)等角度介绍了该体系中氧空位调控效应.同时依托氧空位调控的最新研究进展,尤其是对氧空位调控单相材料多铁性质方面工作的分析,为探索新型磁电功能性材料与器件提供了重要参考.  相似文献   

16.
陈爱天  赵永刚 《物理学报》2018,67(15):157513-157513
电场调控磁性能够有效降低功耗,在未来低功耗多功能器件等方面具有巨大的潜在应用前景.铁磁/铁电多铁异质结构是实现电场调控磁性的有效途径,其中室温、磁电耦合效应大的应变媒介磁电耦合是最为活跃的研究领域之一.本文简要介绍在以Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_3为铁电材料的多铁异质结构中通过应变媒介磁电耦合效应对磁性、磁化翻转及磁性隧道结调控的研究进展.首先讨论了多铁异质结构中电场对磁性的调控;之后介绍了电场调控磁化翻转的研究进展及理论上实现的途径;然后简述了电场对磁性隧道结调控的相关结果;最后在此基础上,对多铁异质结构中电场调控磁性及磁性器件进行了总结和展望.  相似文献   

17.
We deposited epitaxial BiFeO3–CoFe2O4 (BFO–CFO) self‐assembled thin films on (001) SrTiO3 (STO) substrates. We find that a combined annealing and etching process could remove the BFO matrix, thereby resulting in free‐standing CFO nanopillar arrays. Scanning electron and atomic force microscopies showed well separated CFO nanopillars, which were very similar to the original CFO ones in the self‐assembled structure. Finally, comparison of the magnetic hysteresis loops before and after removal of the BFO matrix showed a significant decrease of the coercive field and a dramatic decrease in the strain dominated magnetic anisotropy. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
《Current Applied Physics》2015,15(5):584-587
We investigated ferroelectric characteristics of BiFeO3 (BFO) thin films on SrRuO3 (SRO)/yttria-stabilized zirconia (YSZ)/glass substrates grown by pulsed laser deposition. YSZ buffer layers were employed to grow highly crystallized BFO thin films as well as SRO bottom electrodes on glass substrates. The BFO thin films exhibited good ferroelectric properties with a remanent polarization of 2Pr = 59.6 μC/cm2 and fast switching behavior within about 125 ns. Piezoelectric force microscopy (PFM) study revealed that the BFO thin films have much smaller mosaic ferroelectric domain patterns than epitaxial BFO thin films on Nb:SrTiO3 substrates. Presumably these small domain widths which originated from smaller domain energy give rise to the faster electrical switching behavior in comparison with the epitaxial BFO thin films on Nb:SrTiO3 substrates.  相似文献   

19.
Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism (spins and/or magnetic field) and electricity (electric dipoles and/or electric field). In spite of the long research history in the whole twentieth century, the discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the new achievements since that time becomes imperative. In this review, following a concise outline of the basic knowledge of multiferroicity and magnetoelectricity, we summarize the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years. We consider not only single-phase multiferroics but also multiferroic heterostructures. We address the physical mechanisms regarding magnetoelectric coupling so that the backbone of this divergent discipline can be highlighted. A series of issues on lattice symmetry, magnetic ordering, ferroelectricity generation, electromagnon excitations, multiferroic domain structure and domain wall dynamics, and interfacial coupling in multiferroic heterostructures, will be revisited in an updated framework of physics. In addition, several emergent phenomena and related physics, including magnetic skyrmions and generic topological structures associated with magnetoelectricity will be discussed. The review is ended with a set of prospectives and forward-looking conclusions, which may inevitably reflect the authors' biased opinions but are certainly critical.  相似文献   

20.
The present work reports on resistive switching (RS) characteristics of Neodymium (Nd)-doped bismuth ferrite (BFO) layers. The Nd (2–10 at%) doped BFO thin film layers were deposited using a spray pyrolysis method. The structural analysis reveals that a higher Nd doping concentration in BFO leads to significant distortion of the prepared Nd:BFO thin films from rhombohedral to tetragonal characteristics. The morphological analysis shows that all the deposited Nd:BFO thin films have regularly arranged grains. The X-ray photoelectron spectroscopy (XPS) analysis reveals that the prepared Nd:BFO thin films have a higher Fe 3+/Fe 2+ratio and less oxygen vacancy (VO) defects which enriches the ferroelectric characteristics in Nd:BFO layers. The polarization-electric field (P-E) and RS characteristics of the fabricated Nd:BFO-based RS device were examined. It was observed that the Nd (7 at%) doped BFO RS device shows large remnant polarization (P r) of 0.21 μC/cm2 and stable RS characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号