首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical properties of Se-doped Al0.3Ga0.7As layers grown by molecular beam epitaxy (MBE) on GaAs(111)A substrates have been investigated by Hall-effect and deep level transient spectroscopy (DLTS) measurements. In Se-doped GaAs layers, the carrier concentration depends on the misorientation angle of the substrates; it decreases drastically on the exact (111)A surface due to the re-evaporation of Se atoms. By contrast, in Se-doped AlGaAs layers, the decrease is not observed even on exact oriented (111)A. This is caused by the suppression of the re-evaporation of Se atoms, by Se---Al bonds formed during the Se-doped AlGaAs growth. An AlGaAs/GaAs high electron mobility transistor (HEMT) structure has been grown. The Hall mobility of the sample on a (111)A 5° off substrate is 5.9×104 cm2/V·s at 77 K. This result shows that using Se as the n-type dopant is effective in fabricating devices on GaAs(111)A.  相似文献   

2.
Heavily carbon-doped GaAs epitaxial layers have been grown simultaneously on (100), (111)A, (111)B, (411)A, (411)B and (711)A semi-insulating (SI) GaAs substrates by metalorganic molecular beam epitaxy (MOMBE) using trimethylgallium (TMG) and elemental As (As4). The hole concentration and surface flatness strongly depend on the substrate orientation. The highest carbon incorporation was observed for the layers grown on a (411)A substrate with a hole concentration of 1.0 × 1021 cm− 3 and a lattice mismatch of Δd/d = −0.48%. Atomic force microscope (AFM) images reveal that the epilayers grown on (411)A substrates exhibit extremely flat surfaces, although these layers contain the highest carbon concentration.  相似文献   

3.
The misfit dislocation configurations in InAs islands as well as in more or less continuous layers grown on (001) oriented GaAs substrates were studied by weak-beam and high-resolution electron microscopy. The islands are confined by {101} and {111} facets where the aspect ratio (height/lateral extension) can be affected by the growth conditions. It is possible to grow well-defined islands as well as relatively continuous layers by MOVPE under As-stabilized conditions. At constant deposition parameters the growth is characterized by islands of different sizes (but with constant aspect ratio) in various strain states depending on their dislocation content. Coherently strained islands without any dislocation can be observed for heights up to 23 ML InAs, or otherwise, up to a maximal island extension of about 12 nm (for the particular aspect ratio ≈︂0.585). With further increase of island height and lateral extension, the introduction of dislocations becomes favourable. Independent of the island size, the layer thickness and the dislocation density, a residual elastic strain of about εr = —0.8% remains after relaxation. This means, about 88% of the total misfit strain of ε = —6.686 × 10—2 were compensated by Lomer dislocations. These sessile Lomer dislocations lie in the island interior only, where single 60° dislocations were observed exclusively in their near-edge regions. With increasing island size and/or layer thickness some close-spaced 60° dislocations occur additionally within the interfacial region. The Lomer dislocations that are always located 4 monolayers (ML) above the InAs/GaAs interfacial plane result from the well-known fusion of two 60° slip dislocations. These 60° dislocations have been nucleated 7 … 8 ML above the interface at surface steps on the {111} facets confining the islands. Based on our experimental observations a new mechanism is proposed that explains the origin of these 60° dislocations. Their further fusion to sessile Lomer dislocations that compensate the misfit strain most efficiently occurs in the way as commonly accepted.  相似文献   

4.
InGaAs/GaAs heterostructures grown on (001) substrates by low-pressure MOVPE exhibit a measurable anisotropy in their structural, optical and electrical properties. This anisotropy occurs in structures which have undergone partial or complete strain relaxation and it can be strongly reduced by using slightly misoriented substrates. A comparison with similar structures grown by CBE indicates that this anisotropy is less important. This study suggests that strain relaxation is achieved by a combination of several mechanisms whose relative importance depends on the orientation of the substrate and on growth temperature which varies with the growth technique.  相似文献   

5.
Effectively atomically flat interfaces over a macroscopic area (200 μm diameter) have been achieved in GaAs/Al0.7Ga0.3As quantum wells (QWs) with well widths of 3.6-12 nm grown on (411)A GaAs substrates by molecular beam epitaxy (MBE) for the first time. A single and very narrow photoluminescence peak (FWHM, full width at half maximum, is 6.1 meV) was observed at 717.4 nm for the QW with a well width of 3.6 nm at 4.2 K. The linewidth is comparable to that of growth-interrupted QWs grown on (100)-oriented GaAs substrates by MBE. A 1.5 μm thick Al0.7Ga0.3As layer with good surface morphology also could be grown on (411)A GaAs substrates in the entire growth temperature region of 580-700°C, while rough surfaces were observed in Al0.7Ga0.3As layers simultaneously grown on (100) GaAs substrates at 640-700°C. These results indicate that the surface of GaAs and Al0.7Ga0.3As grown on the (411)A GaAs substrates are extremely flat and stable on the (411)A plane.  相似文献   

6.
We have made a systematic study of the tin doping of GaAs layers grown on GaAs(111)A substrates using molecular beam epitaxy (MBE). A series of samples were grown with a range of substrate temperatures (from 460 to 620°C), As:Ga flux ratios (5:1 to 25:1) and tin concentrations (1016 to 1020 atoms cm−3). Layers grown on (111)A surfaces were n-type (in contrast to silicon doping) but with carrier concentrations dependent on growth conditions. We have used secondary ion mass spectrometry (SIMS) measurements to confirm the concentration of tin incorporated and its distribution within the layers.  相似文献   

7.
GaAs/Al0.3Ga0.7As multi-layer structures were grown on GaAs (100) reverse-mesa etched substrates by glancing angle molecular beam epitaxy (GA-MBE). A(111)B facet was formed as a side-facet. Surface migration of Ga and Al atoms from the (100) flat region to the (111)B side-facet region has been investigated to fabricate T-shaped GaAs/AlGaAs quantum wells (QWs) under the condition that Ga and Al atoms impinge only an the (100) flat region and do not impinge on the (111)B side-facet. Observation of T-shaped GaAs/AlGaAs quantum wires (QWRs) by cross-sectional transmission electron microscopy (TEM) revealed that there is no migration of Al atoms from the (100) to the (111)B facet region at a substrate temperature (Ts) as high as 630°C, under a V/III ratio of 28 (in pressure ratio). On the other hand, very thin GaAs epitaxial layers grown on the (111)B side-facet region owing to the Ga migration were observed for substrate temperatures of 600 and 630°C. It was found that the mass flow of Ga atoms from the (100) region to the (111)B side-facet region increases, with the thermal activation energy of 2.0 eV, as the substrate temperature increases from 570 to 630°C. The GA-MBE growth on a reverse-mesa etched GaAs substrate at a low temperature 570°C or lower is desirable to fabricate a nm-scale GaAs/AlGaAs QWR structure with nm-scale precision.  相似文献   

8.
Weak-beam, large angle convergent beam electron diffraction and high resolution transmission electron microscope experiments have revealed, that after strain relaxation due to plastic deformation dislocation networks can be observed in In(1—x)Al(x)P heteroepitaxial layers grown on (001) GaAs substrates under compressive stress. The 60° slip dislocations are mostly dissociated into partials of Shockley type whereas in the particular case of layers grown under tension twins are predominantly formed by successive nucleation and slip of 90° Shockley partials on adjacent {111} glide planes lying inclined to the (001) surface. When a few 90° Shockley partials pile up during extension of twins, then planar incoherent twin boundaries with {112} coincidence planes have been formed during strain relaxation. Due to the space group symmetry ((InAl)P belongs to the space group F4-3m) there is a striking asymmetry in defect formation, i.e. defect nucleation and slip on the planes (111) and (1-1-1) slip of the [1-10] zone are preferred to nucleation and slip on the {111} planes of the [110] zone. Apparently, the occupacy of the atomic sites in the dislocation core with either group-III or group-V atoms is responsible for this behaviour. The nature of the defects implies that their spontaneous nucleation should have taken place at the growing surface. Under tensile strain the 90° Shockley partial is nucleated first and the 30° one trails. Under compressive strain this sequence is reversed. It is evident, for dissociated dislocations lying at the interface always the 30° partial, i.e. the partial with less mobility or with higher friction force, is detained near or directly in the interface. Thus, in layers grown under tension the stacking fault associated with the dissociated 60° dislocation lies inside the GaAs substrate. For layers grown under compression it is located inside the ternary layer.  相似文献   

9.
Strong enhancement in the luminescence intensity is observed in Al0.22Ga0.78As epitaxial layers grown on misoriented (111)B GaAs as compared to those simultaneously grown on (100) GaAs. For a 1° misorientation the luminescence intensity is almost 1° to 1000 times that of the (100) layers, depending on the growth temperature. Room temperature electron mobility for 3° misoriented (111)B Al0.18Ga0.82As is 19% higher than that for side-by-side grown (100). The strong luminescence associated with a large red shift of 90 meV and the 19% mobility enhancement are related to the long range composition ordering in (111)B AlGaAs, which is observed by cross-sectional transmission electron microscopy in a 280 å Al0.4GaAs quantum well heterostructure with Al0.7GaAs barriers grown on (111)B GaAs substrates.  相似文献   

10.
We report on a series of Be-doped GaAs/AlGaAs two-dimensional hole gas (2DHG) structures grown on (110), (111)B, (211)B and (311)B oriented substrates and compare their properties with high-mobility samples grown on (311)A using Si doping. The samples were prepared and grown under the same conditions so as to render them comparable. They are found to have mobilities which are strongly anisotropic within the plane. The highest mobility is found on the (110) surface with 100,000 cm2 V−1 s−1, while the (211) surface gave the lowest values 10,000 cm2 V−1 s−1. However, the later samples are found to have quantum Hall effect critical currents of >70 μA: an exceptionally high value for a hole gas which makes them suitable for metrology. All the samples show strong low-field positive magnetoresistance with resistance increases of up to 30% at magnetic fields of only 0.1 T. The presence of this feature on all the different planes shows that it does not depend upon the details of the band structure. It is identified with the lifting of the degeneracy of the spin sub-bands by the asymmetrical potential giving rise to a classical two-band magnetoreresistance.  相似文献   

11.
In situ spectroscopic ellipsometry was used to monitor the nucleation behavior of CdTe grown on vicinal GaAs (100) substrates by organometallic vapor phase epitaxy. CdTe was grown on GaAs (100) substrates of exact and 2° off towards 110 orientations. A spectroscopic ellipsometer was used to collect in situ data at 44 wavelengths from 4000–7000 Å. The Bruggeman's effective medium approximation was employed to determine the variation of the epilayer volume fraction with thickness, which was an indirect way of monitoring the expected island growth behavior. The Stranski-Krastonov (layer plus island) mode of growth was clearly observed for CdTe growth. The growth on the 2° off substrate was also “denser” than that on exact (100), which implied that coalescence of the islands occurred at lower thickness. This was expected since island nucleation is most favored along the ledges on the surface whose spacing decreases with increasing misorientation. A simple nucleation model, assuming cylinder-like islands, was able to fit the experimental data quite well, lending support to the island growth model.  相似文献   

12.
GaAs and GaN epilayers were grown on GaAs substrates by gas source molecular beam epitaxy technique using triethylarsine (TEAs) and diethylarsine (DEAsH) as As sources, and dimethylhydrazine (DMHy) as an N source. It was found that GaAs grows layer by layer even when organic arsine molecular sources are used. Cubic GaN was found to grow epitaxially on sufficiently nitrided surfaces of GaAs (001) substrates, in contrast with the growth of hexagonal GaN on GaAs (111) surfaces. It was also found that nitridation of GaAs surfaces does not occur when DEAsH and DMHy beams are supplied onto the GaAs substrates, simultaneously. Thus, GaN/GaAs multilayers were obtained only by intermittent supply of a DEAsH beam.  相似文献   

13.
Semiconductor magnetic quantum dots are very promising structures, with novel properties that find multiple applications in spintronic devices. EuTe is a wide gap semiconductor with NaCl structure, and strong magnetic moments S=7/2 at the half filled 4f7 electronic levels. On the other hand, SnTe is a narrow gap semiconductor with the same crystal structure and 4% lattice mismatch with EuTe. In this work, we investigate the molecular beam epitaxial growth of EuTe on SnTe after the critical thickness for island formation is surpassed, as a previous step to the growth of organized magnetic quantum dots. The topology and strain state of EuTe islands were studied as a function of growth temperature and EuTe nominal layer thickness. Reflection high energy electron diffraction (RHEED) was used in-situ to monitor surface morphology and strain state. RHEED results were complemented and enriched with atomic force microscopy and grazing incidence X-ray diffraction measurements made at the XRD2 beamline of the Brazilian Synchrotron. EuTe islands of increasing height and diameter are obtained when the EuTe nominal thickness increases, with higher aspect ratio for the islands grown at lower temperatures. As the islands grow, a relaxation toward the EuTe bulk lattice parameter was observed. The relaxation process was partially reverted by the growth of the SnTe cap layer, vital to protect the EuTe islands from oxidation. A simple model is outlined to describe the distortions caused by the EuTe islands on the SnTe buffer and cap layers. The SnTe cap layers formed interesting plateau structures with easily controlled wall height, that could find applications as a template for future nanostructures growth.  相似文献   

14.
Films of yttrium iron garnet were grown on (111) gadolinium gallium garnet by liquid phase epitaxy from a PbO-B2O3 flux. Incorporation of Pb as a substitutional impurity produced an increase in film lattice parameter which resulted in initial compressive misfit strains in the films. The initial strains were relieved by annealing in O2. The relief process was studied by X-ray double-crystal diffractometry and topography supplemented by optical and scanning electron microscopy. Strain relief was found to be associated with the occurrence of defects which were imaged in both film and substrate topographs. When the initial compressive misfit was sufficiently large, annealing eventually resulted in a tensile strain and the development of cracks which propagated through the films and into the substrates.  相似文献   

15.
ZnTe layers were grown on (111) GaAs substrates by metalorganic vapor phase epitaxy using dimethylzinc and diethyltelluride as the source materials. X-ray diffraction analysis revealed that epitaxial ZnTe layers can be obtained on (111) GaAs substrates. X-ray rocking curves, Raman spectroscopy, and photoluminescence measurements showed that the crystal quality of ZnTe layers depends on the substrate temperature during the growth. A high-crystalline quality (111) ZnTe heteroepitaxial layer with strong near-band-edge emission at 550 nm was obtained at a substrate temperature of 440 °C.  相似文献   

16.
为了实现Ⅲ-V器件在硅基平台上单片集成,近年来Ⅲ-V半导体在硅衬底上的异质外延得到了广泛研究。由于Ⅲ-V半导体与Si之间大的晶格失配以及晶格结构不同,在Si上生长的Ⅲ-V半导体中存在较多的失配位错及反相畴,对器件性能造成严重影响。而Si(111)表面的双原子台阶可以避免Ⅲ-V异质外延过程中形成反相畴。本文利用分子束外延技术通过Al/AlAs作为中间层首次在Si(111)衬底上外延生长了GaAs(111)薄膜。通过一系列对比实验验证了Al/AlAs中间层的插入对GaAs薄膜质量的调控作用,并在此基础上通过低温-高温两步法优化了GaAs的生长条件。结果表明Al/AlAs插层可以为GaAs外延生长提供模板,并在一定程度上释放GaAs与Si之间的失配应力,从而使GaAs薄膜的晶体质量得到提高。以上工作为Ⅲ-V半导体在硅上的生长提供了新思路。  相似文献   

17.
A systematic study of structural and electrical properties of GaSb and AlGaSb grown on GaAs by metalorganic chemical vapor deposition is reported. In general, the results obtained from surface morphologies, X-ray linewidths and Hall properties are consistent with each other and indicate that the optimal growth conditions for GaSb are at 525°C around V/III = 1. A highest hole mobility of 652 cm2/V · s at RT (3208 cm2/V · s at 77 K) and a lowest concentration of 2.8 × 1016 cm−3 (1.2 × 1015 cm−3 at 77 K) were obtained for GaSb grown under this optimal condition. Compared to the GaSb growth, a smaller V/III ratio is needed for the AlGaSb growth to protect the surface morphology. When Al was incorporated into GaSb growth, mobility decreased and carrier concentration increased sharply. The AlGaSb grown at 600°C had a background concentration about one order of magnitude lower than the AlGaSb grown at 680°C. Room-temperature current-voltage characteristics of GaSb/AlxGa1 − xSb/GaSb show a rectifying feature when Al composition x is higher than 0.3, suggesting a valence-band discontinuity at the AlGaSb/GaSb interface. A leakage current much higher than the value predicted by the thermionic emission theory is observed at 77 K, presumably due to a large number of dislocations generated by the huge lattice mismatch between GaSb and GaAs.  相似文献   

18.
MBE grown epitaxial films of CaF2 onto Si(111) substrates were investigated by gamma ray diffraction to obtain assertions about the real structure and the strain situation in the epitaxial systems. It were measured the integral reflection coefficient Ri and the angle distribution of the reflected intensity of both (111) and (333) reflections. It was found that (i) a high temperature annealing step during the wafer preparation (1200 °C) causes a drastical increase of real structure defects in the substrate material, (ii) expitaxial layers of 18 nm thickness are grown pseudomorphically, layers having a thickness of 30 nm are relaxed, (iii) the misfit dislocation network formed during the relaxation process is localized not in the deposit but in the substrate material.  相似文献   

19.
Sharp and rich photoluminescence lines accociated with free exciton (FE), excitons bound to neutral acceptors (A0X) and donors (D0X) in molecular beam epitaxially (MBE) grown (211) CdTe/(211)B GaAs have been reported for the first time. The results show that the (211) CdTe/(211)B GaAs grown under optimized conditions could have as high a crystal perfection as those grown on lattice-matched substrates.  相似文献   

20.
Islands of BaTiO3 in a thin film deposited on a (111) InSb substrate by metalorganic chemical vapor deposition at a temperature of 300°C were investigated. Refractive index measured by ellipsometer using a He-Ne laser was 1.95, which is nearly the same value as that of amorphous BaTiO3 with microcrystals. X-ray diffraction peaks showed the deposit to be mostly amorphous and partly crystalline having the 110BaTiO3 direction normal to the (111) InSb. Transmission electron microscopy results showed that partially epitaxial BaTiO3 islands with periodic misfit dislocations had been formed at the interface between amorphous BaTiO3 thin layer and the (111) InSb substrate. These BaTiO3 islands on the (111) InSb substrate formed at a low growth temperature were three-dimensional nuclei which were closely associated with surface irregularities of the (111) InSb substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号