首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the pursuit of an understanding of complex surfaces, the problem of obtaining quantitative structural information about local adsorbate geometry is especially difficult. Conventional diffraction methods rely on long-range order of the adsorbed species, rarely present in complex coadsorption systems. Elementally specific local structural probes can help, but ultimately one also requires chemical-state specificity. This can be achieved in structural methods that involve detection of photoelectrons through the well-known ‘chemical shifts’ in core-level photoelectron binding energies; specific methods of this type are scanned-energy mode photoelectron diffraction (PhD) and normal-incidence X-ray standing waves (NISXW). Recent examples of chemical-shift PhD and NIXSW applications to complex coadsorption systems and to larger molecular adsorbates demonstrate this potential. Received: 28 April 2000 / Accepted: 6 June 2000 / Published online: 7 March 2001  相似文献   

2.
Determination of surface structures currently requires careful measurement and computationally expensive methods since, unlike bulk crystals, guiding principles for generating surface structural hypotheses are frequently lacking. Herein, we discuss the applicability of Pauling's rules as a set of guidelines for surface structures. The wealth of solved reconstructions on SrTiO3 (100), (110), and (111) are considered, as well as nanostructures on these surfaces and a few other ABO3 oxide materials. These rules are found to explain atomic arrangements for reconstructions and thin films just as they apply to bulk oxide materials. Using this data and Pauling's rules, the fundamental structural units of reconstructions and their arrangement are discussed.  相似文献   

3.
S.A Safran   《Surface science》2002,500(1-3):127-146
We review the continuum, statistical thermodynamics of surfaces and interfaces in soft matter where both the energy and entropy of the surface are comparable. These systems include complex fluids that are dominated by either surface tension or the interfacial curvature, such as: fluid and solid interfaces, colloidal dispersions, macromolecular solutions, membranes, and other self-assembling aggregates such as micelles, vesicles, and microemulsions. The primary focus is on the theoretical concepts, their universality, and the role of fluctuations and inhomogeneities with connections to relevant experimental systems.  相似文献   

4.
The anisotropic surface stress changes associated with the transition between different surface reconstructions of InAs and InP (0 0 1) surfaces are measured in situ and in real time in a molecular beam epitaxy (MBE) system. Reflectivity anisotropy of the surface measured at 1.96 eV, together with reflection high energy electron diffraction (RHEED) pattern, are used in order to identify the surface reconstructions, and the monitoring of the substrate curvature evolution to determine the variations in surface stress. Our results show the important contribution to the surface stress of the dimers present in these reconstructed surfaces. Furthermore, we provide for the first time quantitative values of the surface stress changes due to the transition between surface reconstructions for these III-V semiconductors compounds. We obtain values for these changes up to 0.7 Nm−1, that is, of the same magnitude as the stress induced by deposition of one monolayer during growth of lattice-mismatched III-V semiconductor heteroepitaxial systems. This points out the great importance of surface stress evolution in this kind of processes.  相似文献   

5.
We have recently reported structure solutions for the (2 × 1) and c(4 × 2) reconstructions of SrTiO3(0 0 1) based on high-resolution electron microscopy, direct methods analysis of diffraction data and density functional theory. Both reconstructions were found to be TiO2-rich and feature a single overlayer of TiO2 stoichiometry on top of a bulk-like TiO2 layer. Qualitatively, the two reconstruction geometries differ in the cation sub-lattice of the overlayer only, where Ti atoms occupy half of the fivefold cation sites. In the present work we use density functional theory to generate a number of variations of this structural motif in search of patterns of stability. We find a reliable predictor for the reconstruction energy in the ability of oxygen atoms to relax vertically out of the overlayer plane to minimize non-bonded oxygen-oxygen repulsions. Out-of-plane relaxation of oxygen atoms in turn is modulated by the number and relative position of coordinating Ti atoms, which yields simple empirical rules as to how cations are distributed in low energy reconstructions.  相似文献   

6.
In this review we survey the contributions that molecular beam experiments have provided to our understanding of the dynamics and kinetics of chemical interactions of gas molecules with solid surfaces. First, we describe the experimental details of the different instrumental setups and approaches available for the study of these systems under the ultrahigh vacuum conditions and with the model planar surfaces often used in modern surface-science experiments. Next, a discussion is provided of the most important fundamental aspects of the dynamics of chemical adsorption that have been elucidated with the help of molecular beam experiments, which include the development of potential energy surfaces, the determination of the different channels for energy exchange between the incoming molecules and the surface, the identification of adsorption precursor states, the understanding of dissociative chemisorption, the determination of the contributions of corrugation, steps, and other structural details of the surface to the adsorption process, the effect to molecular steering, the identification of avenues for assisting adsorption, and the molecular details associated with the kinetics of the uptake of adsorbates as a function of coverage. We follow with a summary of the work directed at the determination of kinetic parameters and mechanistic details of surface reactions associated with catalysis, mostly those promoted by late transition metals. This discussion we initiate with an overview of what has been learned about simple bimolecular reactions such as the oxidation of CO and H2 with O2 and the reaction of CO with NO, and continue with the review of the studies of more complex systems such as the oxidation of alcohols, the conversion of organic acids, the hydrogenation and isomerization of olefins, and the oxidative activation of alkanes under conditions of short contact times. 6 Reactions on supported nanoparticles: Materials gap, 7 Low-probability reactions: Pressure gap of this review deal with the advances made in the use of molecular beams with more realistic models for catalysis, using surfaces comprised of metal nanoparticles dispersed on the oxide surfaces used as catalyst support and high-flux beams to approach the pressures used in catalysis. The next section deals with the study of systems associated with fields other than catalysis, mainly with the etching and oxidation of semiconductor surfaces and with the chemistry used to grow thin solid films by chemical means (chemical vapor deposition, CVD, or atomic layer deposition, ALD). We end with a personal assessment of the past accomplishments, present state, and future promise of the use of molecular beams for the study of the kinetics of surface reactions relevant to practical applications.  相似文献   

7.
Surface reconstructions of InGaAs alloys   总被引:1,自引:0,他引:1  
P.A. Bone  G.R. Bell 《Surface science》2006,600(5):973-982
The surface reconstructions of InxGa1−xAs alloys grown by molecular beam epitaxy on the (0 0 1) surfaces of GaAs and InAs have been studied by reflection high-energy electron diffraction and scanning tunnelling microscopy. A surface phase diagram is presented for the nominally strain-free alloy as a function of substrate temperature and alloy composition, and structural models for the commonly observed 3× reconstructions are discussed. Two new, electronically stable structural models are described that account for the transition of the InxGa1−xAs surface alloy from a c(4 × 4) to an asymmetric 3× reconstruction and that are fully consistent with all current experimental evidence.  相似文献   

8.
In this article we show that the reconstructions of semiconductor surfaces can be determined using a genetic procedure. Coupled with highly optimized interatomic potentials, the present approach represents an efficient tool for finding and sorting good structural candidates for further electronic structure calculations and comparison with scanning tunneling microscope (STM) images. We illustrate the method for the case of Si(1 0 5), and build a database of structures that includes the previously found low-energy models, as well as a number of novel configurations.  相似文献   

9.
This paper gives a critical review on the applications of ToF SIMS in the areas of polymer additive characterization and in the study of polymer blends and interfaces. Polymer additives can readily be identified by ToF SIMS using their parent molecular ions or characteristic fragments. This analytical capability has been successfully applied to monitor the migration or segregation of additives during polymer processing. ToF SIMS is an ideal analytical tool for the study of polymer blends and interfaces because it is able to provide information on both surface composition and morphology. In combination with other analytical techniques such as AFM and XPS, ToF SIMS chemical imaging capability has opened up new horizons in the investigation of complex polymer blend systems. Finally the main advantages and limitations of ToF SIMS in these application areas are also discussed.  相似文献   

10.
The phase diagram of the fcc(1 1 0) surfaces with missing-row reconstructions induced by adatoms, is calculated by use of the Blume–Emmery–Griffiths model. In the model, we introduce adatom–adatom interactions to determine surface structures and dipole–dipole interactions to describe the effect of zigzag adsorption. The interactions between nearest-neighbor (NN) and next-nearest-neighbor (NNN) rows are considered. The calculation of the temperature versus adatom chemical potential phase diagram is performed using mean-field approximation. It is indicated that if NN and NNN interactions are competitive, there appear either dipole or coverage modulated (incommensurate) phases at high temperatures for a wide range of the interactions.  相似文献   

11.
The modelling, benchmarking and selection process for non-contact 3D imaging systems relies on the ability to characterise their performance. Characterisation methods that require optically compliant artefacts such as matt white spheres or planes, fail to reveal the performance limitations of a 3D sensor as would be encountered when measuring a real world object with problematic surface finish. This paper reports a method of evaluating the performance of 3D imaging systems on surfaces of arbitrary isotropic surface finish, position and orientation. The method involves capturing point clouds from a set of samples in a range of surface orientations and distances from the sensor. Point clouds are processed to create a single performance chart per surface finish, which shows both if a point is likely to be recovered, and the expected point noise as a function of surface orientation and distance from the sensor. In this paper, the method is demonstrated by utilising a low cost pan-tilt table and an active stereo 3D camera. Its performance is characterised by the fraction and quality of recovered data points on aluminium isotropic surfaces ranging in roughness average (Ra) from 0.09 to 0.46 µm at angles of up to 55° relative to the sensor over a distances from 400 to 800 mm to the scanner. Results from a matt white surface similar to those used in previous characterisation methods contrast drastically with results from even the dullest aluminium sample tested, demonstrating the need to characterise sensors by their limitations, not just best case performance.  相似文献   

12.
Ihsan Boustani   《Surface science》1997,370(2-3):355-363
New very stable quasi-planar clusters of bare boron are found by systematic ab initio density functional and quantum chemical methods. They are composed of dove-tailed hexagonal pyramids different from the classical forms of - or β-rhombohedral boron crystallines. The quasi-planar structures are considered to be fragments of quasi-planar surfaces, which can easily be obtained and constructed from a basic unit of hexagonal pyramids. A new investigation on double layers of boron quasi-planar surfaces shows an increase in the stability of the system which can be related to the overlap of π-orbitals between the layers. Therefore, we predict the existence of a series of parallel boron layers, as in graphite. These proposed surfaces can serve as lightweight protective armor, as a neutron-absorber material in fission reactions, or as very high temperature semiconductors.  相似文献   

13.
J. Goniakowski  C. Noguera   《Surface science》1995,340(3):191-204
The electronic and atomic structure of vicinal MgO surfaces are studied using a quantum self-consistent method associated with a geometry optimization code. 10n, (n + 1)0n and n1n surfaces, with periodic monoatomic steps separating {001} or {101} terraces, are considered. Diatomic steps along the {10n} orientation and periodic kinks on the {3 1 10} surface are also modelled. We assign most electronic peculiarities of stepped surfaces to the values of the Madelung potential acting on the under-coordinated atoms, which is a function of their first and second coordination numbers. An analytical model is proposed to explain the bond contractions around these atoms. Finally the microscopic contributions to the step energy are discussed, together with the strength of the step interaction as a function of their separation.  相似文献   

14.
Using the Stillinger--Weber (SW) potential model, we investigate the thermal stability of pristine silicon nanowires based on classical molecular dynamics (MD) simulations. We explore the structural evolutions and the Lindemann indices of silicon nanowires at different temperatures in order to unveil atomic-level melting behaviour of silicon nanowires. The simulation results show that silicon nanowires with surface reconstructions have higher thermal stability than those without surface reconstructions, and that silicon nanowires with perpendicular dimmer rows on the two (100) surfaces have somewhat higher thermal stability than nanowires with parallel dimmer rows on the two (100) surfaces. Furthermore, the melting temperature of silicon nanowires increases as their diameter increases and reaches a saturation value close to the melting temperature of bulk silicon. The value of the Lindemann index for melting silicon nanowires is 0.037.  相似文献   

15.
We have studied the structures and stabilities of copper nano-particles and the melting properties of copper surfaces using interatomic potential-based molecular dynamics simulations, where the (1 1 1) surface has been shown to be the most stable in terms of surface energy and melting behaviour. Low energy shapes of nano-particles are influenced by the surfaces present and therefore have a higher proportion of (1 1 1) surface. The effect of surface structure on stability becomes less marked as the size of the nano-particle is increased. Melting is observed to occur below the bulk melting temperature in all the surfaces investigated, at increasingly lower temperatures from the (1 1 1), (1 0 0), (1 1 0) down to the (2 1 0) surface, confirming their order of decreasing stability. The melting processes of defective close-packed copper surfaces were also simulated. Steps, kinks, and facets were all shown to accelerate the melting of the surfaces. The melting is shown to initiate at the site of the defect and the results demonstrate that it is the low-coordinated atoms, at the step edge or kink, that are more mobile at lower temperatures. These features facilitate surface melting even further below the melting temperature than was observed for the perfect surfaces. Furthermore, facets of (1 0 0) surface were shown to be unstable even at moderate temperatures on the close-packed surface.  相似文献   

16.
Numerous experiments in ultra-high vacuum as well as (T=0 K, p=0) theoretical studies on surfaces have been performed over the last decades in order to gain a better understanding of the mechanisms, which, for example, underlie the phenomena of catalysis and corrosion. Often the results achieved this way cannot be extrapolated directly to the technologically relevant situation of finite temperature and high pressure. Accordingly, modern surface science has realized that bridging the so-called pressure gap (getting out of the vacuum) is the inevitable way to go. Of similar importance are studies in which the temperature is changed systematically (warming up and cooling down). Both aspects are being taken into account in recent experiments and ab initio calculations.

In this paper we stress that there is still much to learn and important questions to be answered concerning the complex atomic and molecular processes which occur at surfaces and actuate catalysis and corrosion, although significant advances in this exciting field have been made over the years. We demonstrate how synergetic effects between theory and experiment are leading to the next step, which is the development of simple concepts and understanding of the different modes of the interaction of chemisorbed species with surfaces. To a large extent this is being made possible by recent developments in theoretical methodology, which allow to extend the ab initio (i.e., starting from the self-consistent electronic structure) approach to poly-atomic complexes with 10,000 and more atoms, time scales of seconds, and involved statistics (e.g., ab initio molecular dynamics with 10,000 and more trajectories). In this paper we will

1. sketch recent density–functional theory based hybrid methods, which bridge the length and time scales from those of electron orbitals to meso- and macroscopic proportions, and

2. present some key results on properties of surfaces, demonstrating their role in corrosion and heterogeneous catalysis. In particular we discuss

◦ the influence of the ambient gas phase on the surface structure and stoichiometry,

◦ adsorbate phase transitions and thermal desorption, and

◦ the role of atoms' dynamics and statistics for the surface chemical reactivity.

Keywords: Density functional calculations; Non-equilibrium thermodynamics and statistical mechanics; Catalysis; Corrosion; Oxidation; Surface chemical reaction; Surface thermodynamics (including phase transitions); Ruthenium  相似文献   


17.
G.B. Sergeev  T.I. Shabatina   《Surface science》2002,500(1-3):628-655
The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4–10 and 70–100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.  相似文献   

18.
Surfaces of 6H-SiC(0001) homoepitaxial layers deposited on vicinal (3.5° off (0001) towards [11 0]) and on-axis 6H---SiC wafers by chemical vapour deposition have been investigated using ultra-high vacuum scanning tunneling microscopy. Undulating step configurations were observed on both the on-axis and the vicinal surfaces. The former surface possessed wider terraces than the latter. Step heights on both surfaces were 0.25 nm corresponding to single bilayers containing one Si and one C layer. After annealing at T>1100°C for 3–5 min in UHV, selected terraces contained honeycomb-like regions caused by the transformation to a graphitic surface as a result of Si sublimation. A model of the observed step configuration has been proposed based on the observation of the [ 110] or [1 10] orientations of the steps and energetic considerations. Additional deposition of very thin (2 nm) SiC films on the above samples by gas source molecular beam epitaxy was performed to observe the evolution of the surface structure. Step bunching and growth of 6H---SiC layers and formation of 3C---SiC islands were observed on the vicinal and the on-axis surfaces, respectively, and controlled by the diffusion lengths of the adatoms.  相似文献   

19.
A. S. Dalton  E. G. Seebauer   《Surface science》2004,550(1-3):140-148
The structure and dynamics of amorphous surfaces are poorly understood. The present work develops methods employing classical molecular dynamics (MD) simulations to elucidate these phenomena on amorphous silicon. Careful relaxation of the initial ensemble and taking account of exchange with the bulk yield surface diffusion coefficients in good agreement with experiment. Randomly oriented dimer pairs dominate the surface structure. Diffusion proceeds by several pathways, which all differ in basic character from those typically observed on crystalline silicon. The primary pathways involve single atoms and dimer pairs, which typically move only one or two atomic diameters before reincorporating into the surface. Frequent vertical migration takes place between the first two atomic layers.  相似文献   

20.
We address two common major problems in the study of time series characterizing fluctuations in complex systems: multifractal analysis and multifractal modeling. Specifically, we introduce a multi-fractal centered moving average (MF-CMA) analysis, which is computationally easier but equivalently performing compared with the well-established multi-fractal detrended fluctuation analysis (MF-DFA) with linear detrending. In addition, we study in detail a generalized binomial multi-fractal model (GB-MFM) to conveniently and reliably generate multifractal surrogate data with arbitrary singularity strengths and arbitrary long-term persistence. We use the data generated by this model as well as realistic, by construction monofractal data series with crossovers and trends to test and compare the multifractal analysis methods and discuss finite-size effects as well as limitations due to spurious multifractality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号