首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Flash photolysis of CH3CHO and H2CO in the presence of NO has been investigated by the intracavity laser spectroscopy technique. The decay of HNO formed by the reaction HCO + NO → HNO + CO was studied at NO pressures of 6.8–380 torr. At low NO pressure HNO was found to decay by the reaction HNO + HNO → N2O + H2O. The rate constant of this reaction was determined to be k1 = (1.5 ± 0.8) × 10?15 cm3/s. At high NO pressure the reaction HNO + NO → products was more important, and its rate constant was measured to be k2 = (5 ± 1.5) × 10?19 cm3/s. NO2 was detected as one of the products of this reaction. Alternative mechanisms for this reaction are discussed.  相似文献   

2.
The reactions of O3 with ethylene, allene, 1,3-butadiene, and trans-1,3-pentadiene have been studied in the presence of excess O2 over the temperature range 232 to 298 K. The initial O3 pressure was varied from 4–18 mtorr, and the olefin pressure was varied from 0.1 to 4.5 torr (ethylene), 2.8 to 39.6 torr (allene), 52.7 to 600 mtorr (1,3-butadiene) or 26.2 to 106 mtorr (trans-1,3-pentadiene). The O3 decay was monitored by ultraviolet absorption. The reactions are first order in both O3 and olefin, and the rate coefficients are independent of the O2 pressure. For the O3-ethylene system, various diluent gases (O2, N2, air) were used and the rate coefficients were found to be independent of the nature of the diluent gas. The various rate coefficients fit the Arrhenius expressions (k in cm3 s?1): where the reported uncertainties are one standard deviation and R is in cal/mol K.  相似文献   

3.
The kinetics of the gas-phase reaction of the NO3 radical with naphthalene have been investigated at 150 torr O2 + 590 torr N2 and 600 torr O2 + 140 torr N2 at 298 ± 2 K. Relative rate measurements were carried out in reacting NO3? N2O5-naphthalene-propene-O2? N2 mixtures by longpath Fourier transform infrared absorption spectroscopy. A rate constant ratio for the reactions of O2 and NO2 with the NO3-naphthalene adduct of k/k < 4 × 10?7 was obtained from the competition between O2 and NO2 for reaction with the NO3-naphthalene adduct and thermal decomposition of the adduct back to reactants. Atmospheric pressure ionization MS/MS measurements of the nitronaphthalene products of the NO3 radical-initiated reaction of naphthalene are consistent with the proposed reaction mechanism, and the atmospheric implications of the data are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The rate constants for the reactions Cl + CH3OD → CH2OD + HCl (1) and CH2OH + O2 → HO2 + H2CO (2) have been determined in a discharge flow system near 1 torr pressure with detection of radical and molecular species using collision-free sampling mass spectrometry. The rate constant k1, determined from the decay of CH3OD in the presence of excess Cl, is (5.1 ± 1.0) × 10?11 cm3 s?1. This is in reasonable agreement with the only previous measurement of k1. The CH2OH radical was produced by reaction (1) and its reaction with O2 was studied by monitoring the decay of the CH2OH radical in the presence of excess O2. The result is k2 = (8.6 ± 2.0) × 10?12 cm3 s?1. Previous estimates of k2 have differed by nearly an order of magnitude, and our value for k2 supports the more recent high values.  相似文献   

5.
CF3O2CF3 was photolyzed at 254 nm in the presence of CO in 760 torr N2 or air at 296 K in a static reactor. In N2, the products CF3OC(O)C(O)OCF3 and CF3OC(O)O2C(O)OCF3 were detected by FTIR spectroscopy. In air, the only observed products were CF2O and CO2 and a chain process, initiated by CF3O, was invoked for the conversion of CO to CO2. From both product studies, a mechanism for the CF3O initiated oxidation of CO was derived, involving the addition reaction CF3O2 + CO → CF3OC(O). The rate constant for the reaction CF3O + CO at 296 K at a total pressure of 760 torr air was determined to be k(CF3O + CO) = (5.0 ± 0.9) × 10−14 cm3 molecule−1 s−1. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
The rate constant of the reaction of OH with DMS has been measured relative to OH + ethene in a 420 l reaction chamber at 760 torr total pressure and 298 ± 3 K in N2 + O2 buffer gas using the 254 nm photolysis of H2O2 as the OH source. In agreement with a recent absolute rate determination of the reaction the measured effective rate constant was found to increase with increasing partial pressure of O2 in the system, for 760 torr air a rate constant of (8.0 ± 0.5) × 10?12 cm3 s?1 was obtained. Product studies have been performed on the reaction in air using FTIR absorption spectrometry for detection of reactants and products. On a molar basis, SO2 was formed with a yield of 70% and dimethyl sulfone (CH3SO2CH3) with a yield of approximately 20%. These results are considerably different to those obtained in other product studies which were carried out in the presence of NOx. These differences are compared and their relevance for the atmospheric oxidation mechanisms of DMS is discussed.  相似文献   

7.
A kinetic study has been made of the 3130-Å photolysis of CH2O (8 torr) in O2-containing mixtures (0.02–8 torr) and in the presence of added CO2 (0–300 torr) at 25°C. Quantum yields of formation of H2, CO, and CO2 and the loss of O2 were measured. Φ and ΦCO were much above unity. In an explanation of these unexpected results, a new H-atom-forming chain mechanism was postulated involving HO2 and HO addition to CH2O: CH2O + hν → H + HCO (1) H + CH2O → H2 + HCO (3) H + O2 + M → HO2 + M (6) HCO + O2 → HO2 + CO (8) HO2 + CH2O → (HO2CH2O) → HO + HCO2H (15) HO + CH2O → H2O + HCO? (16); HCO? → H + CO (19) HO + CH2O → H2O + HCO (17) and HO + CH2O → HCO2H + H (18). When the results are rationalized in terms of this mechanism, the data suggest k16 ? k17 and k16/k18 ? 0.5. The data require that a reassessment of the relative rates of reactions (7) and (8) be made, since in the previous work HCO2H formation was used as a monitor of the rate of reaction (7) HCO + O2 + M → HCOO2 + M (7). The present data from experiments at P = 8 torr and P = 1–4 torr give k7[M]/(k7[M] + k8) ≥ 0.049 ± 0.017. These data coupled with the k8 estimates of Washida and coworkers give k7 ≥ (4.4 ± 1.6) × 1011 l2/mol2·sec for M = CH2O. The reaction sequence proposed here is consistent with the observed deterimental effect of O2 addition on the laser-induced isotope enrichment in HDCO. In additional studies of CH2O-O2-isobutene mixtures it was found that Φ was equal to ?2 as estimated in O2-free CH2O-isobutene mixtures. These results suggest that the increase in CO (ν = 1) product observed with O2 addition in CH2O photolysis does not result from perturbations in the fragmentation pattern of the excited CH2O, but it is likely that it originates in the occurrence of the exothermic reaction HCO + O2 → HO2 + CO (ν = 1).  相似文献   

8.
Dichloroethylene (DCE), either cis or trans, was reacted with O3 at 23°C in both N2 and O2 buffered mixtures. Both reactant consumption and product formation were monitored by infrared spectroscopy and, in some cases, O3 consumption was monitored by ultraviolet absorption. For thoroughly dried mixtures, the initial products were only HCClO and O2, but geometrical isomerization also occurred. The stoichiometry of the overall reaction always was The HCClO was unstable and disappeared slowly in a first-order reaction which was, at least in part, heterogeneous. The products were CO and HCl so that the stoichiometric reaction was The rate law was complex. The rate was always faster in N2 than in O2. In the N2 buffered reaction, inhibition occurred as the reaction progressed and O2 was produced. From the reactant and product decay curves, the following rate behavior was established: where high and low concentrations are relative terms for the initial pressure ranges covered ([DCE]0 = 0.21?78.4 torr, [O3]0 = 0.30?6.76 torr). The rate coefficients k2, k3, and k4 were larger for the trans-DCE than the cis-DCE, and for each isomer they were larger in N2 than in O2 buffered reactions. The ozonolysis can be explained in terms of the mechanism where R2 is DCE, RO is HCClO, and RO2 is HCClO2. Rate ceofficients are computed. The isomerization is first order in [O3] and approximately first order in [DCE] for the limited kinetic data we were able to obtain. The isomerization does not appear to be explained by the reverse reactions of reactions (6), (7), and (9). Presumably isomerization occurs through some other route.  相似文献   

9.
Summary The kinetics of the reaction between H2O2 and some Schiff base complexes of MnIII have been investigated in both aqueous and micellar sodium dodecyl sulphate (SDS) solution. The reaction rate is first order in both H2O2 and [complex], and inversely proportional to [H+]. The second-order rate constant increases in the sequence [Mn(salophen)(OAc)] > [Mn(salen)(OH2)]-ClO4 > [Mn(salen)(OAc)]H2O, where salen = N,N-bis-(salicylidene)ethylenediamine and salophen = N,N-bis-(salicylidene)-o-phenylenediamine. At SDS concentrations below the critical micellar concentration, there is almost no effect on the rate of reaction whereas at higher concentrations the reaction rate increases slightly. A mechanism involving MnII and a peroxo intermediate is proposed.  相似文献   

10.
The equilibrium constant, Keq of the reaction NO2 + NO3 + M 2 N2O5 + M has been determined for a small range of temperatures around room temperature in air at 740 torr by direct spectroscopical measurements of NO2, NO3, and N2O5. At 298 K, Keq was determined as (3.73 ± 0.61) × 10−11 cm3 molecule−1. Averaging this and 11 other independent evaluations of Keq yields Keq = (3.31 ± 0.82) × 10−11 cm3 molecule−1, where the uncertainty is given as one standard deviation. The kinetics of the O3/NO2/N2O5/NO3/ air system was studied in a static chamber at room temperature and 740 torr total pressure. Evidence of a unimolecular decay reaction of NO3, NO3 → NO + O2, was found and its rate coefficient was estimated as (1.6 ± 0.7) × 10−3 s−1 at 295 ± 2 K.  相似文献   

11.
The kinetics of the thermal decomposition of CF3O3CF3 has been investigated in the pressure range of 15–599 torr at temperatures between 59.8 and 90.3°C and also in the presence of CO between 42 and 7°C. The reaction is homogeneous. In the absence of CO the only reaction products are CF3O2CF3 and O2. The rate of reaction is strictly proportional to the trioxide pressure, and is not affected by the total pressure, the presence of inert gases, and oxygen. The following mechanism explains the experimental results: In the presence of CO there appear CO2, (CF3OCO)2, and CF3O2C(O)OCF3 as products. With increasing temperature the amount of peroxicarbonate decreases, while the amounts of oxalate and CO2 increase. The rate of decomposition of the trioxide above a limiting pressure of about 10 torr CO is strictly first order and independent of CO pressure, total pressure, and the pressure of the products. The addition of larger amounts of O2 to the CO containing system chaqnges the course of the reaction.  相似文献   

12.
N2O was photolyzed at 2139 Å to produce O(1D) atoms in the presence of H2O and CO. The O(1D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative importance of the various possible O(1D )–H2O reactions is The relative rate constant for O(1D) removal by H2O compared to that by N2O is 2.1, in good agreement with that found earlier in our laboratory. In the presence Of C3H6, the OH can be removed by reaction with either CO or C3H6: From the CO2 yield, k3/k2 = 75,0 at 100°C and 55.0 at 200°C to within ± 10%. When these values are combined with the value of k2 = 7.0 × 10?13exp (–1100/RT) cm3/sec, k3 = 1.36 × 10?11 exp (–100/RT) cm3/sec. At 25°C, k3 extrapolates to 1.1 × 10?11 cm3/sec.  相似文献   

13.
The kinetics and stoiehiometry of the decomposition of N2H2 and N2D2 have been studied as a function of sample size, pressure, and temperature. The reaction follows a single first order kinetic expression over most of its time course. It is suggested that the rate-determining step in the mechanism is a first-order homogeneous gas-phase isomerization of trans-diimide with rate constants:k = 1.8 exp (-4.2 kcal/mol/RT) sec?1 and k = 1 exp (-4.4 kcal/mol/RT) sec?1. The detailed mechanism of this isomerization, however, is not evident. At temperatures above room temperature, self-heating has been observed which leads to an initial fast decay. At room temperature the reaction exhibits autocatalysis with the rate increasing as the reaction proceeds. This has been attributed to enhancement by a surface decay process involving adsorbed hydrazine. The only significant products from the decomposition of N2H2 are N2, H2, and N2H4, and the results are interpreted in terms of two parallel reactions: The decomposition of N2D2 occurs almost completely by the single reaction giving N2 + N2D4. No azide formation has been detected from either N2D2, or N2D2, and limits have been put on the yield of ammonia. Extinction coefficients at 365 nm of 3.9 ± 0.2 for N2H2 and 3.3 ± 0.1 for N2D2 have been measured. Both the rate of decay and the stoichiometry of products show pressure dependence below 150 torr, and this is suggested to be due to direct decomposition of cis-N2H2 on the surface.  相似文献   

14.
The kinetics and mechanism of the thermal reduction of NO by H2 have been investigated by FTIR spectrometry in the temperature range of 900 to 1225 K at a constant pressure of 700 torr using mixtures of varying NO/H2 ratios. In about half of our experimental runs, CO was introduced to capture the OH radical formed in the system with the well-known, fast reaction, OH + CO → H + CO2. The rates of NO decay and CO2 formation were kinetically modeled to extract the rate constant for the rate-controlling step, (2) HNO + NO → N2O + OH. Combining the modeled values with those from the computer simulation of earlier kinetic data reported by Hinshelwood and co-workers (refs. [3] and [4]), Graven (ref.[5]), and Kaufman and Decker (ref. [6]) gives rise to the following expression: . This encompasses 45 data points and covers the temperature range of 900 to 1425 K. RRKM calculations based on the latest ab initio MO results indicate that the reaction is controlled by the addition/stabilization processes forming the HN(O)NO intermediate at low temperatures and by the addition/isomerization/decomposition processes producing N2O + OH above 900 K. The calculated value of k2 agrees satisfactorily with the experimental result. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Very strong laser emission at 5 μm was detected when SO2 and CHBr3 were flash photolyzed in the vacuum ultraviolet (λ ≥ 165 nm) in the presence of a large amount of diluent (SF6, He, or Ar). About 110 vibration–rotation transitions ranging from Δv = 18 → 17 to 3 → 2, except 16 → 15, were identified. The primary reactions leading to the CO stimulated emission are as follows: The product analysis results and the variation of laser intensity with flash energy and SO concentration indicate that the following side reactions are also occurring. Addition of a small amount of O2 enhances the laser output by both eliminating these side reactions and simultaneously producing vibrationally excited CO via reaction (8), which has been previously shown to generate CO stimulated emission. The effects of various reactive (NO and H2) and inert (He, Ar, SF6, CO, N2, N2O, and CO2) gases have been examined. All additives (P ≤ 20 torr), except NO and H2, increase the total laser output. N2O enhances the power most efficiently, whereas CO, N2, and CO2 are less effective and have similar efficiencies. The enhancement of the laser intensity by these near-resonant gases is ascribed to the depletion of CO population at lower levels which thus increases the rates cascading from higher levels. NO and H2 quench the laser output by chemically reducing the concentration of the CH radical.  相似文献   

16.
Reactions of Cu2 with several small molecules have been studied in the gas phase, under thermalized conditions at room temperature, in a fast-flow reactor. They fall into one of two categories. Cu2 does not react with O2, N2O, N2, H2, and CH4 at pressures up to 6 torr. This implies bimolecular rate constants of less than 5 × 10?15 cm3 s?1 at 6 torr He. Cu2 reacts with CO, NH3, C2H4, and C3H6 in a manner characteristic of association reactions. Second-order rate constants for all four of these reagents are dependent on total pressure. The reactions with CO, NH3, and C2H4 are in their low pressure limit at up to 6 torr He buffer gas pressure. The reaction with C3H6 begins to show fall-off behavior at pressures above 3 torr. Limiting low-pressure, third-order rate constants are 0.66 ± 0.10, 8.8 ± 1.2, 9.3 ± 1.4, and 85 ± 15 × 10?30 cm6 s?1 in He for CO, NH3, C2H4, and C3H6, respectively. Modeling studies of these rate constants imply that the association complexes are bound by at least 20 kcal mol?1 in the case of C2H4 and C3H6 and at least 25 kcal mol?1 in the other cases. The implications of these results for Cu-ligand bonding are developed in comparison with existing work on the interactions of these ligands with Cu atoms, larger clusters, and surfaces. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The autoinhibiting reaction of ozone with dimethyl sulfide (DMS), has been studied at 296°K and 1.1 kPa (8 torr) as a function of the concentrations of both reactants. The major products of the reaction are H2CO, H2O, CO, and SO2. The specific rate of primary attack of O3 on DMS is immeasurably slow. It is suggested that the rapid overall rate observed for this reaction is due to a chain reaction initiated by the very slow primary reaction. It is concluded that reaction (1) cannot be important under atmospheric conditions and that the major loss process for DMS in the atmosphere is probably reaction with photochemically generated free radicals.  相似文献   

18.
Mixtures of N2O, CO, and NO in excess H2 were photolyzed at 213.9 nm and 298°K. The initially formed O(1D) atoms from the photolysis of N2O abstract an H atom from H2 permitting a study of the competition: From the CO2 yield the relative rate coefficient k1/k2 is obtained. It is found to be slightly dependent on pressure for total pressures (mainly H2) of 95.5 to 768 torr. However, the values are near the high-pressure limiting value which is found by extrapolation to give k1 = 1.2 × 10?11 cm3/sec based on k2 = 3.55 × 10?13 cm3/sec.  相似文献   

19.
The effect of pressure on the rate constant of the OH + CO reaction has been measured for Ar, N2, and SF6 over the pressure range 200–730 torr. All experiments were at room temperature. The method involved laser-induced fluorescence to measure steady-state OH concentrations in the 184.9 nm photolysis of H2O-CO mixtures in the three carrier gases, combined with supplementary measurements of the CO depletion in these same carrier gases in the presence and absence of competing reference reactants. The effect of O2 on the pressure effect was determined. A pressure enhancement of the rate constant was observed for N2 and SF6, but not for Ar, within an experimental error of about 10%. The pressure effect for N2 was somewhat lower than previous literature reports, being about 40% at 730 torr. For SF6 a factor of two enhancement was seen at 730 torr. In each case it was found that O2 had no effect on the pressure enhancement. The roles of the radical species HCO and HOCO were evaluated.  相似文献   

20.
The absolute rate constant for the reaction of phenyl radical with acetylene has been measured at 20 torr total pressure in the temperature range of 297 to 523 K using the cavity-ring-down technique. These new kinetic data could be quantitatively correlated with the data obtained earlier with a relative rate method under low-pressure (10?3–10?2 torr) and high-temperature (1000–1330 K) conditions. These kinetic data were analyzed in terms of the RRKM theory employing the thermochemical and molecular structure data computed with the BAC-MP4 technique. The calculated results reveal that the total rate constant for the C6H5 + C2H2 reaction (kt) is pressure-independent, whereas those for the formation of C6H5C2H (kb) and the C6H5C2H2 adduct (kc) are strongly pressure-dependent. A least-squares analysis of the calculated values for 300–2000 K at the atmospheric pressure of N2 or Ar can be given by and all in units of cm3/s. The latter equation effectively represents the two sets of experimental data. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号