首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An experimental study of a fully developed turbulent channel flow and an adverse pressure gradient (APG) turbulent channel flow over smooth and rough walls has been performed using a particle image velocimetry (PIV) technique. The rough walls comprised two-dimensional square ribs of nominal height, k = 3 mm and pitch, p = 2k, 4k and 8k. It was observed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. Similarly, rib roughness significantly increased the level of turbulence production, Reynolds stresses and wall-normal transport of turbulence kinetic energy and Reynolds shear stress well beyond the roughness sublayer. On the contrary, the distributions of the eddy viscosity, mixing length and streamwise transport of turbulence kinetic energy and Reynolds shear stress were reduced by wall roughness, especially in the outer layer. Adverse pressure gradient produced a further reduction in the mean velocity (in comparison to the results obtained in the parallel section) but increased the wall-normal extent across which the mean flow above the ribs is spatially inhomogeneous in the streamwise direction. APG also reinforced wall roughness in augmenting the equivalent sand grain roughness height. The combination of wall roughness and APG significantly increased turbulence production and Reynolds stresses except in the immediate vicinity of the rough walls. The transport velocities of the turbulence kinetic energy and Reynolds shear stress were also augmented by APG across most part of the rough-wall boundary layer. Further, APG enhanced the distributions of the eddy viscosity across most of the boundary layer but reduced the mixing length outside the roughness sublayer.  相似文献   

2.
In this paper, the time-resolved particle image velocimetry (TR-PIV) and match index refractive (MIR) techniques were used to study the flow field in a large range (0 – 22 Dh) downstream a spacer grid (SG) in a 5 × 5 rod bundle channel at different Reynolds number. The sodium chloride solution (1%) is used as the working fluid to reduce the refractive index error of fluorinated ethylene propylene (FEP) and water. The proper orthogonal decomposition (POD) background removal technique was used to minimize the FEP reflection. These methods greatly reduced the interference of background noise and improved the accuracy of cross-correlation calculation. For TR-PIV velocity fields downstream of the mixing vanes, time-averaged, statistical, spectral, and cross-correlation analysis were performed for the instantaneous full-field experimental data. The transport characteristics of coherent structures in different subchannels of rod bundles are calculated and discussed. The results show that the SG caused a relatively large transverse velocity and reduces the axial velocity. With the increase of the Reynolds number, the SG promotes the generation of transverse flow and has a great resistance to the axial flow. There is relatively large turbulence intensity downstream of the SG due to the mixing effect. The attenuation of transverse turbulence intensity component is slower than the axial component. Moreover, spectrum analysis shows that cross-arranged mixing vanes will generate periodic vortices but single mixing vane will not. These periodic vortices gradually propagate downstream along the inner subchannel and dissipate in the gap subchannel due to the effect of viscosity. The cross-correlation analysis shows that the mixing effect of the SG will reduce the scale of the coherent structure, and increase the convection velocity. The results of current research are helpful for understanding the strong anisotropic turbulence in the rod bundle channel with SG. Finally, the experimental results can be utilized to benchmark the applicability of turbulence models under different Reynolds number and the performance of partially averaged Naiver–Stokes or multiple RANS algorithms downstream of the SG.  相似文献   

3.
An active turbulence generating grid, based on the rotating-vane design of Makita (1991), was developed for a large wind tunnel. At 2.14 m square, the grid is the largest of this type ever developed. To improve the isotropy of the turbulence generated, the grid was placed in the wind tunnel contraction. Measurements show that the grid produces a closely uniform mean flow and homogeneous isotropic turbulence to within two integral scales from the wall. By systematically varying the flow speed and parameters controlling the random motion of the vanes, grid turbulence with a wide variety of characteristics was produced and the dependence of those characteristics on the operating parameters of the grid revealed. Taylor Reynolds numbers of the grid turbulence varied from 100 to 1,360 and integral scales from 5 to almost 70 cm. The extreme cases represent some of the highest Reynolds number and largest scale homogeneous turbulent flows ever generated in a wind tunnel.  相似文献   

4.
Using an active grid in a wind tunnel, we generate homogeneous shear turbulence and initiate turbulent boundary layers with adjustable properties. Homogeneous shear turbulence is characterized by a constant gradient of the mean velocity and a constant turbulence intensity. It is the simplest anisotropic turbulent flow thinkable, and it is generated traditionally by equipping a wind tunnel with screens which have a varying transparency and flow straighteners. This is not done easily, and the reachable turbulence levels are modest. We describe a new technique for generating homogeneous shear turbulence using an active grid only. Our active grid consists of a grid of rods with attached vanes which can be rotated by servo motors. We control the grid by prescribing the time-dependent angle of each axis. We tune the vertical transparency profile of the grid by setting appropriate angles of each rod such as to generate a uniform velocity gradient, and set the rods in flapping motion around these angles to tailor the turbulence intensity. The Taylor Reynolds number reached was R λ = 870, the shear rate S = ∂U/∂y = 9.2 s−1, the nondimensional shear parameter S *≡ Sq 2/ε = 12 and u = 1.4 ms−1. As a further application of this idea we demonstrate the generation of a simulated atmospheric boundary layer in a wind tunnel which has tunable properties. This method offers a great advantage over the traditional one, in which vortex-generating structures need to be placed in the wind tunnel to initiate a fat boundary layer.  相似文献   

5.
A compressible supersonic mixing layer at convective Mach number (Mc) equal to 1 has been studied experimentally in a dual stream supersonic/subsonic wind-tunnel. Laser Doppler Velocimetry (L.D.V.) measurements were performed making possible a full estimation of the mean and turbulent 3D velocity fields in the mixing layer. The Reynolds stress tensor was described. In particular, some anisotropy coefficients were obtained. It appears that the structure of the Reynolds tensor is almost not affected by compressibility at least up to Mc = 1.The turbulent kinetic energy budget was also experimentally estimated. Reynolds analogies assumptions were used to obtain density/velocity correlations in order to build the turbulent kinetic energy budget from LDV measurements. Results have been compared to other experimental and numerical results. Compressibility effects on the turbulent kinetic energy budget have been detected and commented. A study about thermodynamics flow properties was also performed using most recent DNS results experimentally validated by the present data. A non-dimensional number is then introduced in order to quantify the real effect of pressure fluctuations on the thermodynamics quantities fluctuations.  相似文献   

6.
The effects of localized wall blowing through a porous strip are investigated using hot-wire anemometry in a turbulent channel flow. Three blowing magnitudes are studied: σ=0.22, 0.36 and 0.58, where σ is the momentum flux gain ratio and that of the incoming channel flow at three different positions from the spanwise porous strip. The main emphasis of this work was the departure from isotropy of the turbulent flow with localized blowing. The anisotropic invariant map (AIM) for the Reynolds stress tensor revealed that blowing decreased the anisotropy of the turbulent structure in the near-wall region, and a decrease in the longitudinal integral length scale was observed when the blowing rate increased.  相似文献   

7.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

8.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

9.
The unsteady turbulent flow around bodies at high Reynolds number is predicted by an anisotropic eddy-viscosity model in the context of the Organised Eddy Simulation (OES). A tensorial eddy-viscosity concept is developed to reinforce turbulent stress anisotropy, that is a crucial characteristic of non-equilibrium turbulence in the near-region. The theoretical aspects of the modelling are investigated by means of a phase-averaged PIV in the flow around a circular cylinder at Reynolds number 1.4×105. A pronounced stress–strain misalignment is quantified in the near-wake region of the detached flow, that is well captured by a tensorial eddy-viscosity concept. This is achieved by modelling the turbulence stress anisotropy tensor by its projection onto the principal matrices of the strain-rate tensor. Additional transport equations for the projection coefficients are derived from a second-order moment closure scheme. The modification of the turbulence length scale yielded by OES is used in the Detached Eddy Simulation hybrid approach. The detached turbulent flows around a NACA0012 airfoil (2-D) and a circular cylinder (3-D) are studied at Reynolds numbers 105 and 1.4×105, respectively. The results compared to experimental ones emphasise the predictive capabilities of the OES approach concerning the flow physics capture for turbulent unsteady flows around bodies at high Reynolds numbers.  相似文献   

10.
In a stepped channel operating with large flow rates, the flow skims over the pseudo-bottom formed by the step edges as a coherent stream. Intense three-dimensional recirculation is maintained by shear stress transmission from the mainstream to the step cavities, while significant free-surface aeration takes place. The interactions between free-surface aeration and cavity recirculation are investigated herein with seven step cavity configurations. The experiments were conducted in a large stepped channel operating at large Reynolds numbers. For some experiments, triangular vanes, or longitudinal ribs, were placed across the step cavities to manipulate the flow turbulence to enhance the interactions between the mainstream flow and the cavity recirculation region. The results showed a strong influence of the vanes on the air–water flow properties in both free-stream and cavity flows. The findings demonstrate some passive turbulence manipulation in highly turbulent air–water flows.  相似文献   

11.
This experimental study investigated the mean velocity profiles, skin friction and turbulent characteristics of a gravel bed over a wide range of roughness using an acoustic Doppler velocimeter (ADV). The median diameter of bed material ranged from 2 to 40 mm, and the normalized roughness heights ranged from 47 to 4,881 mm. The flow regime was fully developed turbulence with a Reynolds number in the range of 4.2 × 104–9.86 × 104. All velocity curves exhibited logarithmic distributions, and the log-law region was influenced greatly by both the roughness and the Reynolds number. Moreover, the roughness of the gravel bed exerted a strong effect on Reynolds stress, and the turbulence tended towards isotropic with increasing roughness. Using statistical analyses, the third-order turbulence moments, sweep, and ejection motions were also examined. The results of this experimental analysis present a contrast to the classical wall similarity hypothesis.  相似文献   

12.
13.
An experimental study of a three-dimensional, pressuredriven, attached turbulent boundary-layer flow was made at Mach 0.4. Both the mean velocities and the full Reynolds stress tensor were measured simultaneously by a three-component LDA system. Value of the resultant shear stress to turbulent kinetic energy ratio varied between 0.1 and 0.2 and did not remain constant across the boundary-layer. Slopes of the streamwise and azimuthal mixing length distributions in the wall region were around 0.4 and 1.2, respectively. Skew angle of the turbulent shear stress was larger than skew angle of the velocity gradient.  相似文献   

14.
Particle image velocimetry (PIV) was employed to study the flow patterns, time-averaged velocity field, and turbulence properties of the flow in the interdisk midplane between two shrouded co-rotating disks at the interdisk spacing to disk radius ratio S = 0.1 and rotating Reynolds number Re = 2.25 × 105. A quadrangle core flow structure rotating at a frequency 75% of the disks’ rotating frequency was observed. The flow in the region outside the quadrangle core flow structure consisted of four cellular flow structures. Five characteristic flow regions—the hub-influenced region, solid-body rotation region, buffer region, vortex region, and shroud-influenced region—were identified in the flow field. Circumferential and radial turbulence intensities, Reynolds stresses, turbulence kinetic energy, correlation coefficients, as well as the Lagrangian integral time and length scales of turbulent fluctuations were analyzed and presented. Features of the turbulence properties were found to be closely related to the rotation motion of the inner and outer characteristic flow structures. The circumferential components of the turbulence properties exhibited local minima in the buffer region and maxima in the solid-body rotation and vortex regions, while the radial components of the turbulence intensity, turbulent normal stress, and Lagrangian integral turbulence time scale exhibited maximum values in the buffer region and relatively low values in the regions near the hub and the shroud.  相似文献   

15.
The paper gives the results of the DNS/LES which was performed to investigate the transitional and turbulent non-isothermal flows within a rotor/stator cavity. Computations were performed for the cavity of aspect ratio L = 2–35, Rm = 1.8 and for rotational Reynolds numbers up to 290000. The main purpose of the investigations was to analyze the influence of aspect ratio and Reynolds number on the flow structure and heat transfer. The numerical solution is based on a pseudo-spectral Chebyshev–Fourier–Galerkin collocation approximation. The time scheme is semi-implicit second-order accurate, which combines an implicit treatment of the diffusive terms and an explicit Adams–Bashforth extrapolation for the non-linear convective terms. In the paper we analyze distributions of the Reynolds stress tensor components, the turbulent heat flux tensor components, Nusselt number distributions and the turbulent Prandtl number and other structural parameters, which can be useful for modeling purposes. Selected results are compared with the experimental data obtained for single heated rotating disk by Elkins and Eaton (2000).  相似文献   

16.
An experimental study using Particle Image Velocimetry (PIV) on free jets issuing from different orifice plate (OP) nozzles is reported. Mean velocity, turbulence intensity and higher order profiles relevant for large and small scale mixing are considered in the near field and interaction zone (0 < X/D < 20). This is done to determine mixing enhancement due to rectangular, squared, elliptic and triangular nozzles in comparison to circular nozzle results in two orthogonal planes. The effect of Reynolds number on the differences among the nozzle shapes is also considered by performing measurements just after laminar–turbulent transition (Re = 8000) and in the fully turbulent regime (Re = 35,000). The results at low Reynolds number show two classes of jets, i.e. at one side, those closer to axial-symmetric conditions, as circular, square and triangular jets, whereas on the other side those with elongated nozzles as rectangular and elliptic. The reason for the different behavior of the latter is connected to the phenomenon of axis-switching which allows a rearrangement of turbulence over the different velocity components and directions. However, for the highest Reynolds number investigated, all nozzles show similar behavior especially in the jet far field (X/D > 10), thus suggesting a significant Reynolds number dependence of the results.  相似文献   

17.
利用张量的不变量理论,推导得出传统雷诺应力模型中压力应变关联项模型应用于旋转湍流模拟中的一些基本问题,即在纯旋转条件下,传统模型所描述的初始各向异性的湍流中雷诺应力张量演化规律是一个无衰减振荡过程,而快速畸变理论推导结果显示,其演化应是一个阻尼振荡衰减的过程。以衰减雷诺应力为目的,构造出包含旋转率张量高阶量的关联项。然后,结合变形率张量的高阶项,将修正模型扩展至椭圆形流线类型流动。最后,将修正模型应用于轴向旋转圆管内湍流流场的模拟,并将结果与实测结果进行了对比。  相似文献   

18.
An active grid for turbulence generation of several rotatable axes with surmounted vanes that can be driven via stepper or servo motors is presented. We investigate the impact of different excitation protocols for the grid. Using such protocols that already have the intermittent structure of turbulence, higher intermittent flows can be achieved. This concept can also be used to generate turbulent flows of high turbulence intensities (>25%) exhibiting integral length scales beyond the typical size of the test section of the wind tunnel. Similar two-point correlations measured by the intermittent statistics of velocity increments that are characteristic for flows of high Reynolds number, i.e. in the atmospheric boundary layer, can be reproduced.  相似文献   

19.
An experimental investigation of a high Reynolds number flow (Re = 320 000) of a dilute liquid-solid mixture (<1% by volume) was conducted. The turbulent motion of both the liquid phase (water) and particles (0.5, 1, and 2 mm glass beads) was evaluated in an upward pipe flow using a particle image/tracking velocimetry (PIV/PTV) technique. Results show that the Eulerian mean axial velocity of the glass beads is lower than that of the liquid phase in the central region but higher in the near-wall region. Moreover, the presence of the coarse particles has a negligible effect on the turbulence intensity of the liquid phase. Particles show higher streamwise and radial fluctuations than the liquid-phase at the tested conditions. The profiles of particle concentration across the pipe radius show almost constant concentration in the core of the pipe with a decrease towards the near wall region for 0.5 and 1 mm particles. For the 2 mm particles, a nearly linear concentration gradient from centre to the pipe wall is observed. The results presented here provide new information concerning the effect of a dispersed particulate phase on the turbulence modulation of the liquid carrier phase, especially at high Reynolds numbers. The present study also demonstrates how correlations developed to determine if particles cause turbulence attenuation/augmentation are not applicable for solid-liquid flows at high Reynolds numbers. Finally, the importance of particle-fluid slip velocity on fluid phase turbulence modulation is illustrated.  相似文献   

20.
This paper presents an experimental investigation of adverse pressure gradient turbulent flow over two rough surfaces and a reference smooth surface. The adverse pressure gradient was produced in an asymmetric diffuser whose opening angle was 3°. The rough surfaces comprised sand grains and gravels of nominal mean diameters of 1.55 mm and 4.22 mm, respectively. The tests were conducted at an approach flow velocity of 0.5 m/s and the momentum thickness Reynolds number varied from 900 to 3000. A particle image velocimetry technique was used for the velocity measurements. Profiles of the mean velocity, turbulent intensities, Reynolds stress ratios, mixing length, eddy viscosity and the production terms were then obtained to document the effects of adverse pressure gradient (APG) on low Reynolds number rough-wall turbulent boundary layers. The results indicate that APG thickens the boundary layer and roughness sublayer. The APG and surface roughness also enhanced the production of turbulence as well as the turbulence level when compared with the smooth-wall data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号