首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An experimental study was carried out to investigate the effect of the inclination jet on convection heat transfer to horizontal flat plate. Local heat transfer determined as a function is of three parameters including inclination angle of the air jet relative to the plate in range of 90° ≤ θ ≤ 45°, jet-to-plate spacing in range of 2 ≤ L/D ≤ 8 and Reynolds number in range of 1,500 ≤ Re ≤ 30,000. The results show that the maximum heat transfer point moves towards the uphill side of the plate and the maximum heat transfer decreases as the inclination angle decreases. The correlations were conducted to predict maximum and local Nusselt number as a function of Re, θ, L/D, and x/D for a specific three regions.  相似文献   

2.
Experiments were conducted to determine the heat transfer and surface pressure characteristics of a round jet impinging normal on isothermal flat plate. Three nozzles of exit diameters 3, 5 and 7?mm have been used. The local heat transfer rates have been estimated from the outputs of three-wire differential thermocouple heat flux sensors. The results cover a Reynolds number range of 3400 to 41?000 and dimensionless separation distances varies from 6 to 58. The static pressure distributions along the impingement surface are found to be similar and closer to the heat transfer variations at the same configurations. A simple correlation is derived for the average heat transfer coefficients within ±10% deviation from the output data covering the complete range of experimental limits. The predicted values of Nusselt number have also been compared with the results obtained from the literature. The agreement was generally good.  相似文献   

3.
Experiments have been carried out to determine heat transfer rates from a continuously moving belt to an air jet impinging normally. The parameters that were varied included the jet velocity (4 < VN < 40 m/s), the jet width (4.8 < B < 19 mm), the nozzle-to-plate distance (3 < H/2B < 11) and the belt speed (0. 15 < VB < 5. 5 m/s). An infrared thermometer was used for the measurement of temperature of the moving belt. The average heat transfer coefficients increase with belt speed steeply initially to a maximum value and then remain almost constant for all higher belt speeds. The maximum heat transfer coefficients are about 1.5 to 2.0 times higher than those predicted for the stationary surface. The present data on continuously surface in still air and in impinging jet flow are well compared with the data on rotating cylinders reported in the literature.
Wärmeübergang zwischen einem senkrecht auftreffenden Strahl und einer bewegten Oberfläche
Zusammenfassung Experimentell bestimmte Wärmeübergangskoeffizienten für Düsengeschwindigkeiten zwischen 4 m/s und 40 m/s, sowie Düsenbreiten zwischen 4,8 mm und 19 mm lagen bei Bandgeschwindigkeiten zwischen 0, 15 m/s bis 5, 5 m/s ca. 50 % bis 100 % höher als bei unbewegtem Band. Die gemessenen Daten bei bewegtem wie bei unbewegtem Band schließen gut an bekannte Werte aus der Literatur an.

Nomenclature A Heat transfer area - B Width of the nozzle - D Diameter of the cylinder or equivalent diameter of the flat surface (D=L/) - k Thermal conductivity - Gr Grashof number - h Heat transfer coefficient - H Height of the nozzle from the surface - i Number of nozzles - L Heat transfer length of a flat surface - NuD Nusselt number hD/k - ReDB Belt Reynoldsnumber, DVB/ - ReDN Nozzle Reynolds number, DVN/ - ReSN Nozzle Reynolds number, SVN/ - S Hydraulic diameter of the nozzle, 2B - VB Belt velocity or circumferential velocity of a cylinder - VN Nozzle celocity - Kinematic viscosity  相似文献   

4.
An experimental investigations of heat transfer for a stationary isothermal circular cylinder exposed normal to an impinging round air-jet has been reported. The circumferential heat transfer distributions as well as axial Nusselt number is measured. The measurements are taken as a function of the Reynolds number ranging from 3.8 × 103 to 4 × 104, the cylinder separation distance to the nozzle diameter (z/d) varying from 7 to 30, and the nozzle to cylinder diameter ratio (d/D) changing from 0.06 to 0.14. The output results indicated that the axial and radial distributions of the local heat transfer peaked at the impingement point. The heat transfer rate increases as the values of z decreases, for the same d and Re. The drop-off of the Nusselt number with increasing axial distance or radial angle from the impingement point was more pronounced for smaller z and d. The peripheral and surface average Nusselt numbers were determined by integration. The experimental data was used to produce correlations for both average and stagnation point heat transfer. Received on 4 January 1999  相似文献   

5.
 A series of experiments were carried out to determine the heat transfer characteristics of a round, premixed butane/air flame jet impinging upwards on an inclined flat plate, at different angles of incidence. The flame was fixed with an equivalence ratio of 1.0, a Reynolds number of 2500 and a plate-to-nozzle distance of 5d, while the inclination angles chosen for investigation were 57°, 67°, 80° and 90°. It was found that the location of the maximum heat flux point would be shifted away from the geometrical impingement point by reducing the angle of incidence. Decreasing the angle of incidence also enhanced the maximum local heat flux, while reduced the average heat transfer. The present study presented the effect of angle of incidence on the heat transfer characteristics of an impinging butane/air flame jet, which had been rarely reported in previous similar studies. Received on 11 October 2000 The authors wish to thank The Hong Kong Polytechnic University for the financial support of the present study.  相似文献   

6.
A turbulent axisymmetric air jet impinging on a square cylinder mounted on a flat plate has been studied experimentally. Turbulence statistics and flow’s topology were investigated. When the surface was heated through uniform heat flux, local heat transfer coefficient was measured. The jet from a long round pipe, 75 pipe diameters (D) in length, at Reynolds number of 23,000, impinged vertically on the square cylinder (3D × 3D × 43D). Measurements were performed using particle image velocimetry, flow visualization using fluorescent dye and infrared thermography. The flow’s topology demonstrated a three-dimensional recirculation after separating from the square cylinder and a presence of foci between the bottom corner and the recirculation’s detachment line. The distribution of heat transfer coefficient was explained by the influence of these flow’s structures and the advection of kinetic energy. On the impingement wall of the square cylinder, a secondary peak in heat transfer coefficient was observed. Its origin can be attributed to very pronounced shear production coupled with the external turbulence coming from the free jet.  相似文献   

7.
8.
The fluid flow and heat transfer for a slot jet impinging on a flat plate has been analysed for different nozzle-to-plate spacing. The available potential flow solution has been used to solve the boundary layer and energy equations by using the Blasius-Frossling series solution method. The friction factor and Nusselt number have been evaluated as a function of the dimensionless distance from the stagnation point. Correlation for the Stanton number at the Stagnation point, is obtained in terms of velocity gradient at the stagnation point and Reynolds number.
Berechnung des Wärmeübergangs am Staupunkt für einen Strahl, der senkrecht auf eine ebene Fläche trifft
Zusammenfassung Für einen Fluidstrahl, der senkrecht auf eine ebene Platte trifft, wurden für verschiedene Anordnungen von Düse und Platte Strömung und Wärmeübertragung untersucht. Die beschreibende Potentialtheorie wurde verwendet, um die Grenzschicht und Energiegleichungen mit Hilfe der Blasius-Frossling-Reihenentwicklung zu lösen. Reibungsfaktor und Nusseltzahl sind als eine Funktion des dimensionslosen Abstandes vom Staupunkt dargestellt. Die Beziehung für die Stanton-Zahl am Staupunkt ist in den Ausdrücken des Geschwindigkeitsgradienten am Staupunkt und der Reynoldszahl enthalten.

Nomenclature A 1 dimensionless coefficient - a dimensionless parameter - b dimensionless parameter - C f friction factor,C f= 0/(1/2w 2 ) - C p specific heat at constant pressure - F 0 function ofPr and - G 4 function ofPr and - f 1 function of - h heat transfer coefficient - k thermal conductivity - l half-width of slot nozzle - Nu Nusselt number,Nu=hl/k - Pr Prandtl number,Pr=v/ - Re Reynolds number,Re=w l/v - St Stanton number,St=Nu/(Re · Pr) - t temperature - t w wall temperature - t ambient temperature - U dimensionless velocity,U=u/w - U f dimensionless free-stream velocity,U f =u f /w - U s dimensionless mainstream velocity along the plate,U s =u s /w - u velocity component inx-direction - u f free stream velocity - u s mainstream velocity along the plate - w velocity component inz-direction - w velocity at the nozzle exit - x coordination along the plate - X dimensionless distance from the stagnation point along the plate,X=x/l - Y ratio ofU s andU f ,Y=U s /U f - z coordinate perpendicular to the plate - z n height of the nozzle above the plate - Z dimensionless height of the nozzle above the plate,Z=z n /l - thermal diffusivity,=k/( C p) - dimensionless parameter - dimensionless coordinate perpendicular to the plate - viscosity - kinematic viscosity - 0 shear stress at the wall - stream function  相似文献   

9.
A SIMPLE-C algorithm and Jones-Launder k-ε two-equation turbulence model are used to simulate a two-dimensional jet impinging obliquely on a flat surface. Both the continuity and momentum equations for the unsteady state are cast into suitable finite difference equations. The pressure, velocity, turbulent kinetic energy and turbulent energy dissipation rate distributions are solved and show good agreement with various experimental data. The calculations show that the flow field structure of the jet impinging obliquely on a flat surface is strongly affected by the oblique impingement angle. The maximum pressure zone of the obliquely impinging jet flow field moves towards the left as the oblique impingement angle is decreased.  相似文献   

10.
Heat transfer from an obliquely impinging circular, air jet to a flat plate   总被引:5,自引:0,他引:5  
A series of experiments was conducted for the measurement of local convective heat transfer coefficients for an obliquely impinging circular air jet to a flat plate. In the experiments, the oblique angles selected were 90°, 75°, 60° and 45°, with 90° being a vertical jet. Two different Reynolds numbers of 10,000 and 23,000 were considered for the purpose of comparison with previous data available in the literature. Another parameter varied in the measurements was the dimensionless jet-to-plate distance, L/D. Four values of L/D(2, 4, 7, and 10) were considered in the experiments. The experiments were conducted using the preheated wall transient liquid-crystal technique. Liquid-crystal color changes were recorded with a video system. Local convective heat transfer coefficients were obtained through the surface transient temperatures that were related to the recorded color information. Detailed local heat transfer coefficients were presented and discussed in relation to the asymmetric wall jet upon impingement of the jet flow. Results of experiments show that, for a given flow situation, the point of maximum heat transfer shifts away from the geometrical impingement point toward the compression side of the wall jet on the axis of symmetry. The shift is more pronounced with a smaller oblique angle (larger jet inclination) and a smaller jet-to-plate distance. Comparisons of experimental results with existing heat transfer data for both obliquely impinging jets and vertical impinging jets are made. The effect of oblique angles on heat transfer was assessed.  相似文献   

11.
The heat transfer characteristics of a planar free water jet normally or obliquely impinging onto a flat substrate were investigated experimentally. The planar jet issued from a rectangular slot nozzle with a cross section of 1.62 mm × 40 mm. The mean velocity at the nozzle exit ranged from 1.5 to 6.1 m s−1. The corresponding Reynolds number range based on the nozzle gap and the mean velocity was 2200–8800. Constant heat-flux conditions were employed at the solid surface. Various impingement angles between the vertical planar jet and the inclined solid surface were investigated: 90° (normal collision), 70°, 60°, and 50°. In the case of normal collisions, the Nusselt number is high at the impingement line, and decreases with departures from it. The stagnation Nusselt numbers were compared to the predictions of several correlations proposed by other researchers. In oblique collisions, the profiles of the local Nusselt numbers are asymmetric. The locations of the peak Nusselt numbers do not coincide with the geometric center of the planar jet on the surface.  相似文献   

12.
This paper deals with a systematic procedure for assessment of fluid flow and heat transfer parameters for a single round jet impinging on a concave hemispherical surface. Based on Scholkemeier's modifications of the Karman-Pohlhausen integral method, expressions are derived for evaluation of the momentum thickness, boundary layer thickness and the displacement thickness at the stagnation point. This is followed by the estimation of thermal boundary layer thickness and local heat transfer coefficients. A correlation is presented for the Nusselt number at the stagnation point as a function of the Reynolds number for different non-dimensional distances from the exit plane of the jet to the impingement surface.
Bestimmung des Staupunktes bei der Wärmeübertragung für einen einzelnen Strahl, der auf eine konkave halbkugelige Oberfläche trifft
Zusammenfassung Diese Arbeit beschäftigt sich mit dem systematischen Verfahren der Bewertung von Fluidströmungen und Wärmeübertragungsparametern für einen einzelnen runden Strahl, der auf eine konkave halbkugelförmige Oberfläche trifft. Das Verfahren beruht auf Scholkemeiers Modifikation des Karman-Pohlhausen Integrationsverfahrens. Ausdrücke sind für die Berechnung der Impuls-Dicke, der Grenzschichtdicke und der Verschiebungsdicke am Staupunkt hergeleitet worden. Dies ist aus der Berechnung der thermischen Grenzschichtdicke und des lokalen Wärmeübertragungskoeffizienten abgeleitet worden. Es wird eine Gleichung für die Nusselt-Zahl am Staupunkt als Funktion der Reynolds-Zahl für verschiedene dimensionslose Abstände vom Strahlaustrittspunkt bis zum Auftreffpunkt auf die Oberfläche vorgestellt.

Nomenclature c p specific heat at constant pressure - d diameter of single round nozzle - h 0 heat transfer coefficient at the stagnation point - H distance from the exit plane of the jet to the impingement surface - k thermal conductivity - Nu 0.5 Nusselt number based on impinging jet quantities=h 0.50/k - Nu 0.5, 0 stagnation point Nusselt number=h 0 0,50/k - p pressure - p a ambient pressure - p 0 maximum pressure or stagnation pressure - p(x) static pressure at a distancex from the stagnation point - R radius of curvature of the hemisphere - Re J jet Reynolds number=U Jd/ - Re 0.5 Reynolds number based on impinging jet quantities=u m0 0.50/ - T temperature - T a room temperature - T J jet temperature - T W wall temperature - u velocity component inx andx directions (Fig. 1) - u m jet centerline (or maximum) free jet velocity: external (or maximum) boundary layer velocity aty= m - u m0 arrival velocity defined as the maximum velocity the free jet would have at the plane of impingement if the plane were not there - U J jet exit velocity - x* non-dimensional coordinate starting at the stagnation point=x/2 0.50 - x, y rectangular Cartesian coordinates - y coordinate normal to the wall starting at the wall - ratio of thermal to velocity boundary layer thickness= T/m - 0 ratio of thermal to velocity boundary layer thickness at the stagnation point - * inner layer displacement thickness - 0.50 jet half width at the plane of impingement if the plate were not there - m inner boundary layer thickness atu=u m - Pohlhausen's form parameter - dynamic viscosity - kinematic viscosity=/ - fluid density - momentum thickness - 0 momentum thickness at the stagnation point  相似文献   

13.
Several studies of jets impinging on a plane surface have already been made. This paper suggests a new approach to studying impingements of jets. Comparisons have been made between visualisation results and wall pressure measurements. It is shown that only one of these two techniques is sufficient for characterising the flow nature near the wall. Visualisations can be sufficient for determining the location of wall pressure maxima and minima. Detachments and reattachments of the flow are thus located, and the main characteristics of a jet impinging on a plane wall can be shown by simpler experiments such as the spreading over method. Received: 15 October 1998/Accepted: 27 July 1999  相似文献   

14.
Computational investigations are reported on the local flow and heat transfer characteristics from staggered, multiple circular air jets impinging on a flat surface with effusion holes. The geometrical and flow parameters for the computational study are chosen as per the experimental arrangement of Cho and Rhee J Turbomachinery 123:601–608, (14) so as to explain salient features observed in these experiments. The two peaks in the Nusselt number observed in the case of H/D = 6 and three peaks in the case of H/D = 2 are attributed to the flow characteristics such as primary vortices forming an up-wash region, followed by secondary vortices resulting in a secondary stagnation zone. The magnitude of local peak in heat transfer increases up to 88% with increasing values of D/d from 0.5 to 1.5 at Re = 10,000.  相似文献   

15.
 An experimental study of transient boiling heat transfer during a cooling of a hot cylindrical block with an impinging water jet has been made at atmospheric pressure. The experimental data were taken for the following conditions: a degree of subcooling of ΔT sub = 20–80 K, a jet velocity of u j  = 5–15 m/s, a nozzle diameter of d j  = 2 mm and three materials of copper, brass and carbon steel. The block was initially and uniformly heated to about 250 °C and the transient temperatures in the block were measured at eight locations in r-direction at two different depths from the surface during the cooling of hot block. The surface heat flux distribution with time was evaluated using a numerical analysis of 2-D heat conduction. Behavior of the wetting front, which is extending the nucleate boiling region outward, is observed with a high-speed video camera. A position of wetting region is measured and it is correlated well with a power function of time. The changes in estimated heat flux and temperature were compared with the position of wetting region to clarify the effects of subcooling, jet velocity and thermal properties of block on the transient cooling. Received on 17 March 2000  相似文献   

16.
An experimental investigation was performed to determine the heat-transfer distribution in the vicinity of a transient diesel spray impinging on a heated flat plate. The spray prior to impingement was characterised in terms of simultaneous droplet sizes and velocities by phase-Doppler anemometry while during its impingement on the plate, which was heated at temperatures between 150–205°C, the instantaneous surface temperature and associated rates of wall heat transfer were monitored by fast response thermocouples. The parameters examined in this work included the distance between the nozzle and the wall surface, the radial distance from the impingement point, the injection frequency, the injected volume and the pre-impingement wall temperature. The results showed that the wall heat transfer rates are dependent on the spray characteristics prior to impingement; the higher the velocity of arrival of the droplet is, the higher the heat transfer. A correlation was thus developed for the instantaneous and spatially-resolved spray/wall heat transfer based on experimentally-determined Nusselt, Reynolds, Prandtl and Weber numbers over a wide range of test conditions.  相似文献   

17.
The paper concentrates on increasing convective heat transfer due to periodically pulsating impinging air jets. A maximum enhancement rate of cooling effectiveness up to 20% could be detected at an excitation Strouhal number of Sr = 0.82 when using a high pulsation magnitude. Reductions up to 5% occured at low Strouhal numbers with coincident high pulsation magnitudes as well. The thermal results were completed with phase-locked flow field investigations by means of PIV and surface visualizations using the oil film method.  相似文献   

18.
An experimental investigation is performed to study the effect of the finned surfaces and surfaces with vortex generators on the local heat transfer coefficient between impinging circular air jet and flat plate. Reynolds number is varied between 7000 and 30,000 based on the nozzle exit condition and jet to plate spacing between 0.5 and 6 nozzle diameters. Thermal infrared imaging technique is used for the measurement of local temperature distribution on the flat plate. Fins used are in the form of cubes of 2 mm size spaced at a pitch of 5 mm on the target plate and hexagonal prism of side 2.04 mm and height of 2 mm spaced at a pitch of 7.5 mm. Vortex generators in the form of a equilateral triangle of side 4 mm are used. Effect of number of rows of vortex generators, radius of a row, number of vortex generators in a row and inclination angle (i.e., the angle between the plane of the target plate and the plane of the vortex generators) on Nusselt number is studied. It is observed that the heat transfer coefficient between the impinging jet and the target plate is sensitive to the shape of the fin. The increase in the heat transfer coefficient up to 77% depending on the shape of the fin, nozzle plate spacing and the Reynolds number is observed. The augmentation in the heat transfer for the surfaces vortex generators are higher than that of the finned surfaces. The heat transfer augmentation in case of vortex generator is as high as 110% for a single row of six vortex generators at a radius of 1 nozzle diameter as compared to the smooth surface at a given nozzle plate spacing of 1 nozzle diameter and a Reynolds number of 25,000 at extreme radial location.  相似文献   

19.
Aihara  T.  Kim  J. K.  Maruyama  S. 《Heat and Mass Transfer》1990,25(3):145-153
Heat transfer due to an axisymmetric laminar gas jet impinging onto a flat solid surface of uniform temperature is studied numerically, taking into account the temperature dependence of all fluid physical properties. Numerical solutions are obtained for the jet Reynolds numbers 200–2000, jet mouth-to-surface distances 1–4 times the jet nozzle diameter, and for helium-4, air, and carbon dioxide. Effects of the temperature dependence of the fluid properties are investigated using various kinds of reference temperatures and a viscosity correction method. A method of estimating the values of the local Nusselt number for temperature-dependent fluid from the constant-property solutions is proposed.Die Wärmeübertragung durch einen auf eine flache Oberfläche gleichförmiger Temperatur achsensymmetrisch auftreffenden Gasstrahl wird numerisch unter Berücksichtigung der Temperaturabhängigkeit der physikalischen Eigenschaften von Fluiden untersucht. Die numerischen Lösungen werden für die Reynoldschen Strahlzahlen von 200 bis 2000, für die Abstände vom Düsenmund zur Oberfläche vom 1- bis 4-fachen des Düsenstrahldurchmessers und für Helium-4, Luft und Kohlendioxyd erhalten. Die Wirkungen der Temperaturabhängigkeiten von Fluideigenschaften werden unter Verwendung verschiedener Bezugstemperaturen und einer Viskositätskorrekturmethode untersucht. Ausgehend von der Lösung für konstante Stoffwerte wird eine Methode zur Schätzung der Werte der lokalen Nusseltzahl für temperaturabhängige Fluide vorgeschlagen.  相似文献   

20.
Two-dimensional normal impinging jet flowfields, with or without an upper plate, were analysed by employing an implicit bidiagonal numerical method developed by Lavante and Thompkins Jr. The Jones–Launder K–? two-equation turbulent model was employed to study the turbulent effects of the impinging jet flowfield. The upper plate surface pressure, the ground plane pressure and other physical parameters of the momentum flowfield were calculated at various jet exit height and jet inlet Reynolds numbers. These results were compared with those of Beam and Warming's numerical method, Hsiao and Chuang, and others, along with experimental data. The potential core length of the impinging jet without an upper plate is longer than that of the free jet because of the effects of the ground plane, while the potential core length of the impinging jet with an upper plate is shorter than that of the free jet because of the effects of the upper plate. This phenomenon in the present analysis provides a fundamental numerical study of an impinging jet and a basis for further analysis of impinging jet flowfields on a variable angle plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号