首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
采用直接数值模拟的方法,研究分子Pг数对湍流被动标量输运的影响,并提供充分的证据证明,湍流Pг数明显依赖于分子Pг数.在算例中,湍流雷诺平均PгT数与分子Pг数的倒数呈线性关系;湍流亚格子Pгt数与分子Pг数的关系较为复杂,在分子Pг数为1附近时,湍流亚格子Pгt数出现极小值.  相似文献   

2.
A new model for the heat transfer in turbulent pipe flow is presented based on a modified form of the mixing length theory developed by Cebeci [1] for boundary layer flow problems. The model predicts the velocity and temperature distributions and the Nusselt number for fluids with low, medium and high Prandtl numbers (Pr=.02 to 15) and fits the available experimental data very accurately for values of Reynolds number exceeding 104. Expressions for the eddy conductivity and for the turbulent Prandtl number are presented and shown to be dependent upon the Reynolds number, the Prandtl number, and the distance from the tube wall.  相似文献   

3.
Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Re τ=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids, the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer.  相似文献   

4.
The direct numerical simulation(DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed.The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers(P r = 0.71,1.5,and 3.0) and a shear Reynolds number(Reτ = 180).Some typical thermal statistics,including normalized mean temperature and their fluctuations,turbulent heat fluxes,Nusselt number and so on,are analyzed.The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number.Two reasons can explain this.First,the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases,and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field.Second,the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number,and the thermal feedback of the particles to turbulence becomes weak.  相似文献   

5.
Using a priori analyses of direct numerical simulation (DNS) data, a Reynolds stress model (RSM) is developed to account for the influence of polymer additives on turbulent flow over a wide range of flow conditions. The Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitutive model is utilized to evaluate the polymer contribution to the stress tensor. Thirteen DNS data sets are used to analyze the budgets of elastic stress–velocity gradient correlations as well as Reynolds stress and dissipation transport. Closures are developed in the framework of the RSM model for all the required unknown and non-linear terms. The polymer stresses, velocity profiles, turbulent flow statistics and the percentage of friction drag reduction predicted by the RSM model are in good agreement with present and those obtained from independent DNS data over a wide range of rheological and flow parameters.  相似文献   

6.
In the present work, turbulent flow in the annulus of a counter-rotating Taylor-Couette (CRTC) system is studied using large-eddy simulation. The numerical methodology employed is validated, for both the mean and second-order statistics, with the direct numerical simulation (DNS) data available in the literature, for a range of Reynolds numbers from 500 to 4000. Thereafter, turbulent flow occurring in this system at Reynolds numbers of 8000 and 16000 are studied, and the results obtained are analyzed using mean and second-order statistics, vortical structures, velocity vector plots and power energy spectra. Further, the spatio-temporal variation of azimuthal velocity, extracted near the inner cylinder, shows the existence of herringbone like patterns similar to that observed in the previous studies. The effect of eccentricity of the inner cylinder with respect to the outer cylinder is studied, on the turbulent flow in the CRTC system, for two different eccentricity ratios of 0.2 and 0.5 and for two different Reynolds numbers of 1500 and 4000. The results of the eccentric CRTC are analyzed using contours of pressure, mean and second-order statistics, velocity vectors, vortical structures, and turbulence anisotropy maps. It is observed from the eccentric CRTC simulations that the smaller-gap region seems to contain higher amplitude fluctuations and more vortical structures when compared with the larger-gap region. The mean turbulent kinetic energy contours do not change qualitatively with the Reynolds number, however, quantitatively a higher turbulent kinetic energy is observed in the higher Reynolds number case of 4000.  相似文献   

7.
In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB–LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB–LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB–D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.  相似文献   

8.
Shock waves drastically alter the nature of Reynolds stresses in a turbulent flow, and conventional turbulence models cannot reproduce this effect. In the present study, we employ explicit algebraic Reynolds stress model (EARSM) to predict the Reynolds stress anisotropy generated by a shockwave. The model by Wallin and Johansson (2000) is used as the baseline model. It is found to over-predict the post-shock Reynolds stresses in canonical shock turbulence interaction. The budget of the transport equation of Reynolds stresses computed using linear interaction analysis shows that the unsteady shock distortion mechanism and the pressure–velocity correlations are important. We propose improvement to the baseline model using linear interaction analysis results and redistribute the turbulent kinetic energy between the principle Reynolds stresses. The new model matches DNS data for the amplification of Reynolds stresses across the shock and their post-shock evolution, for a range of Mach numbers. It is applied to oblique shock/boundary-layer interaction at Mach 5. Significant improvements are observed in predicting surface pressure and skin friction coefficient, with respect to experimental measurements.  相似文献   

9.
A low Reynolds number (LRN) formulation based on the Partially Averaged Navier-Stokes (PANS) modelling method is presented, which incorporates improved asymptotic representation in near-wall turbulence modelling. The effect of near-wall viscous damping can thus be better accounted for in simulations of wall-bounded turbulent flows. The proposed LRN PANS model uses an LRN k-ε model as the base model and introduces directly its model functions into the PANS formulation. As a result, the inappropriate wall-limiting behavior inherent in the original PANS model is corrected. An interesting feature of the PANS model is that the turbulent Prandtl numbers in the k and ε equations are modified compared to the base model. It is found that this modification has a significant effect on the modelled turbulence. The proposed LRN PANS model is scrutinized in computations of decaying grid turbulence, turbulent channel flow and periodic hill flow, of which the latter has been computed at two different Reynolds numbers of Re = 10,600 and 37,000. In comparison with available DNS, LES or experimental data, the LRN PANS model produces improved predictions over the standard PANS model, particularly in the near-wall region and for resolved turbulence statistics. Furthermore, the LRN PANS model gives similar or better results - at a reduced CPU time - as compared to the Dynamic Smagorinsky model.  相似文献   

10.
DNS of passive thermal turbulent Couette flow at several friction Reynolds numbers (180, 250, and 500), and the Prandtl number of air are presented. The time averaged thermal flow shows the existence of long and wide thermal structures never described before in Couette flows. These thermal structures, named CTFS (Couette Thermal Flow Superstructures), are defined as coherent regions of hot and cold temperature fluctuations. They are intrinsically linked to the velocity structures present in Couette flows. Two different 2D symmetries can be recognized, which get stronger with the Reynolds number. These structures do not affect the mean flow or mean quantities as the Nusselt number. However, turbulent intensities and thermal fluxes depend on the width of the structures, mainly far from the walls. Since the width of the structures is related to the channel width, the statistics of thermal Couette flow are to some point box-dependent.  相似文献   

11.
We present an extension that allows a recently proposed structure-based model for turbulent scalar transport to account for buoyancy effects. The proposed model is based on a generalization of the Interactive Particle Representation Model (IPRM) and is accompanied by a four-equation transport model that provides the turbulence scales needed for the closure of the complete structure-based model (SBM). The structure tensors and their invariants are used to model the additional buoyancy terms that emerge in the four-equation transport equations. Model parameters are set by matching the asymptotic decay exponents in decaying turbulence. The validity of the model is considered for a large number of different types of stably stratified flows at different Richardson numbers (Ri), showing encouraging results. The complete structure-based model achieves fair agreement with LES and DNS predictions for vertical shear in the presence of vertical mean stratification, while the structure tensors are shown to be suitable for use as diagnostic tools for the morphology of highly anisotropic turbulent structures. Additionally, the proposed model is shown to be sensitive to the variation of the inclination angle θ between the direction of the mean velocity gradient and the orientation of the mean scalar gradient. Furthermore, the model correctly predicts that the evolution of the inverse shear parameter is insensitive to the choice of inclination angle, yielding a turbulent Prandtl number close to unity, in accordance with DNS results.  相似文献   

12.
For direct numerical simulation (DNS) of turbulent boundary layers, gen- eration of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mode DNS of turbulent boundary layers on supersonic blunt cones with different Mach numbers, Reynolds numbers and wall temperature conditions can be generated. This is based only on a given instant flow field obtained by a temporal-mode DNS of a turbulent boundary layer on a flat plate. Effectiveness of the method is shown in three typical examples by comparing the results with those obtained by other methods.  相似文献   

13.
Reynolds-averaged statistical flow properties in the turbulent near-wake of a tapered flat plate placed normal to the free-stream were analysed by means of direct numerical simulation (DNS). A taper ratio of 20 was considered in the present study while the Reynolds numbers based on the uniform inflow velocity and the width of the plate at the wide and narrow ends were 1000 and 250, respectively. The tapering gave rise to cellular vortex shedding with randomly occurring vortex dislocations which prohibited a distinction between coherent and incoherent fluctuations. In the current DNS, it was observed that the magnitude of the Reynolds stresses and the production and dissipation rates of fluctuating kinetic energy are much lower than in the wake of a uniform normal flat plate. This reduced magnitude is perhaps due to the fact that the present tapered plate produces a highly incoherent wake, which may result in the reduction of the coherent velocity fluctuations and their overall contribution to the Reynolds-averaged data. In addition to the primary shear-stress term, a secondary shear-stress component was found to co-exist in the present case. The appearance of this secondary shear-stress term, together with the inherent spanwise inhomogeneity and the existence of a distinct secondary flow, was found to drive the fluctuations towards isotropy. In addition, the present DNS surprisingly revealed the appearance of Kelvin-Helmholtz instabilities towards the higher local Reynolds numbers, i.e. beyond 920.  相似文献   

14.
The paper gives the results of the DNS/LES which was performed to investigate the transitional and turbulent non-isothermal flows within a rotor/stator cavity. Computations were performed for the cavity of aspect ratio L = 2–35, Rm = 1.8 and for rotational Reynolds numbers up to 290000. The main purpose of the investigations was to analyze the influence of aspect ratio and Reynolds number on the flow structure and heat transfer. The numerical solution is based on a pseudo-spectral Chebyshev–Fourier–Galerkin collocation approximation. The time scheme is semi-implicit second-order accurate, which combines an implicit treatment of the diffusive terms and an explicit Adams–Bashforth extrapolation for the non-linear convective terms. In the paper we analyze distributions of the Reynolds stress tensor components, the turbulent heat flux tensor components, Nusselt number distributions and the turbulent Prandtl number and other structural parameters, which can be useful for modeling purposes. Selected results are compared with the experimental data obtained for single heated rotating disk by Elkins and Eaton (2000).  相似文献   

15.
16.
Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr’s 0.71–10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr’s. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.  相似文献   

17.
In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT–LES in studying turbulence.  相似文献   

18.
In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT–LES in studying turbulence.  相似文献   

19.
The basic equations for turbulent entrance flow are deduced from an asymptotic expansion of the Navier-Stokes equations and the thermal energy equation forRe→∞. Together with a turbulence model they can be solved numerically. Solutions are independent of the Reynolds and Prandtl number. Based on theses solutions, the skin friction and heat transfer as well as velocity and temperature profiles can be determined for finite Reynolds numbers and Prandtl numbersO (1).  相似文献   

20.
The present study consists in a numerical investigation of turbulent mixed-convection of heat and water vapor transfers inside two-dimensional (2-D) vegetation canopy, in the surrounding atmosphere and in a wet underground. The time-averaged Navier-Stokes equations are used to characterize the flow field surrounding the canopy and within it. Reynolds shear stresses are calculated using the eddy turbulence model and the Prandtl mixing length. The governing equations are solved numerically using an implicit finite difference method and Thomas algorithm. The present model is used for the determination of the micro climatic profiles such as streamlines, isotherms and iso-concentration. Special emphasis is laid on the systematic analysis of the total evaporation rate (evapotranspiration), the local and average heat fluxes, the Nusselt and Sherwood numbers. The effects of Leaf Area Density distribution, the canopy stomata regulation, as well as the atmospheric forcing conditions on the transfers, are presented and analysed. The results show that buoyancy force caused by properties variation reduces the local heat and mass transfer coefficients, and that this reduction increases at lower wind velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号