首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
Recent studies of SWNT/polymer nanocomposites identify the large interfacial thermal resistance at nanotube/nanotube junctions as a primary cause for the only modest increases in thermal conductivity relative to the polymer matrix. To reduce this interfacial thermal resistance, we prepared a freestanding nanotube framework by removing the polymer matrix from a 1 wt % SWNT/PMMA composite by nitrogen gasification and then infiltrated it with epoxy resin and cured. The SWNT/epoxy composite made by this infiltration method has a micron‐scale, bicontinuous morphology and much improved thermal conductivity (220% relative to epoxy) due to the more effective heat transfer within the nanotube‐rich phase. By applying a linear mixing rule to the bicontinuous composite, we conclude that even at high loadings the nanotube framework more effectively transports phonons than well‐dispersed SWNT bundles. Contrary to the widely accepted approaches, these findings suggest that better thermal and electrical conductivities can be accomplished via heterogeneous distributions of SWNT in polymer matrices. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1513–1519, 2006  相似文献   

2.
Single‐walled carbon nanotubes (SWNTs) possess extraordinary properties, but suffer from poor solubility and a lack of purity. Of the possible routes available to solubilize and purify nanotube samples, the use of noncovalent functionalization is ideal as carbon nanotube properties are not deleteriously affected. A multitude of different dispersants have been investigated thus far, but of particular interest is deoxyribonucleic acid (DNA), which has previously been demonstrated to effectively separate metallic and semiconducting carbon nanotubes. Here, we investigate the ability of synthetic nucleobase‐containing poly(acrylamide) polymers to produce stable nanotube dispersions in organic solvents. Polymers bearing different nucleobase and backbone structures, as well as block copolymers with different block sequences were investigated. Polymer:SWNT mass ratios and solvent compositions were optimized for the nucleobase‐functionalized polymers, and semiconducting and metallic SWNT populations were identified by a combination of UV‐Vis‐NIR absorption, Raman, and fluorescence spectroscopy. These results demonstrate the capacity for synthetic DNA analogues to disperse SWNTs in organic media. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2611–2617  相似文献   

3.
A series of linear‐dendritic hybrid polymers, containing pyrene units at the periphery of aliphatic polyester dendrons, were prepared for the purpose of dispersing shortened single‐walled carbon nanotubes (SWNTs) in tetrahydrofuran (THF). The prepared hybrids contained 1, 2, 4, 8, or 16 (G0 through G4) pyrene units and a linear segment composed of polystyrene. It was found that a minimum of four pyrene units was necessary to form a strong enough interaction with SWNTs to enable steric stabilization in solution, when using a linear polymer segment of 11.5 kDa. Increasing either the number of pyrene units per polymer chain or the length of the polymer segment to 18.0 kDa did not improve nanotube solubility, whereas decreasing the polymer length resulted in significantly less effective nanotube dissolution. The G4 dendron alone, without the linear polystyrene segment, was also found to impart solubility to the nanotubes in THF. Interactions between the series of linear‐dendritic hybrids and full‐length multiwalled carbon nanotubes were also investigated, and it was found that the polymers exhibited strong interactions with the multiwalled carbon nanotube surface, resulting in the formation of stable solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1016–1028, 2010  相似文献   

4.
The solution properties of random and block copolymers based on 2‐ethyl‐2‐oxazoline (EtOx) and 2‐nonyl‐2‐oxazoline (NonOx) were investigated in binary solvent mixtures ranging from pure water to pure ethanol. The solubility phase diagrams for the random and block copolymers revealed solubility (after heating), insolubility, dispersions, micellization as well as lower critical solution temperature (LCST) and upper critical solution temperature behavior. The random and block copolymers containing over 60 mol % pNonOx were found to be solubilized in ethanol upon heating, whereas the dissolution temperature of the block copolymers was found to be much higher than for the random copolymers due to the higher extent of crystallinity. Furthermore, the block copolymer containing 10 mol % pNonOx exhibited a LCST in aqueous solution at 68.7 °C, whereas the LCST for the random copolymer was found to be only 20.8 °C based on the formation of hydrophobic microdomains in the block copolymer. The random copolymer displayed a small increase in LCST up to a solvent mixture of 9 wt % EtOH, whereas further increase of ethanol led to a decrease in LCST, which is probably due to the “water‐breaking” effect causing an increased attraction between ethanol and the hydrophobic part of the copolymer. In addition, the EtOx‐NonOx block copolymers revealed the formation of micelles and dynamic light scattering demonstrated that the micellar size is increasing with increasing the ethanol content due to the enhanced solubility of EtOx. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 515–522, 2009  相似文献   

5.
While high shear alignment has been shown to improve the mechanical properties of single‐wall carbon nanotube (SWNT)‐polymer composites, this method does not allow for control over the electrical and dielectric properties of the composite and often results in degradation of these properties. Here, we report a novel method to actively align SWNTs in a polymer matrix, which permits control over the degree of alignment of the SWNTs without the side effects of shear alignment. In this process, SWNTs were aligned via AC field‐induced dipolar interactions among the nanotubes in a liquid matrix followed by immobilization by photopolymerization under continued application of the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy, and the morphology of the aligned nanocomposites was investigated by high‐resolution scanning electron microscopy. The structure of the field induced aligned SWNTs was intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field parameters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1751–1762, 2006  相似文献   

6.
Polymers with multiple tunable responses were achieved by incorporating boronic acid functionality along the backbone of a thermoresponsive polymer. The inherent Lewis acidity and diol‐sensitivity of boronic acid moieties allowed these polymers to respond to changes in pH and glucose concentration. Through reversible addition‐fragmentation chain transfer copolymerization of boronic acid‐containing monomers with N‐isopropylacrylamide, well‐defined block copolymers were synthesized containing a hydrophilic N,N‐dimethylacrylamide block and a second, responsive block with temperature‐dependent water solubility, making the resulting polymers capable of self‐assembly into nanostructures upon heating. By incorporating boronic acids within the thermoresponsive block, the cloud point of the polymer depended on the solution conditions, including pH and diol concentration, allowing tunable cloud point ranges. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2309–2317  相似文献   

7.
Self assembly of block copolymers has gained considerable attention because of its potential use in various areas such as medical and biomedical applications, nanotechnology, and electronics. Herein, we present the synthesis and characterization of amphiphilic block‐random copolymers with a covalently incorporated pH‐sensitive dye, namely eosin. Ring opening metathesis polymerization was chosen for the preparation of well defined block copolymers and block‐random copolymers using a modified “2nd Generation Grubbs” initiator. The self assembly behavior of the block‐random copolymers in solution was studied by dynamic light scattering and small angle X‐ray scattering (SAXS). The influence of dye incorporation on the result of the self assembly process in methanol and ethanol was investigated and a subtle interplay of the nature of the selective solvent, the chain‐length of the block copolymer and the position of the dye within the polymer chain was established. Structural investigations using SAXS revealed a spherical shape and a core‐shell structure of exemplary block and block‐random copolymer micelles. UV–vis absorption and photoluminescence measurements revealed similar optical properties for polymer micelles in methanol compared to polymer solutions in THF. The pH‐sensitive behavior of the eosin dye was preserved within the micelles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 401–413, 2008  相似文献   

8.
Novel triblock copolymers having self‐complementary hydrogen‐bonding units were synthesized by using reversible addition–fragmentation transfer polymerization. As characterized by dynamic light scattering and atomic force microscopy, these polymers formed noncovalently crosslinked polymer particles and showed an aggregation behavior by intermolecular and intramolecular interactions. At low concentration, polymers formed nanoparticles, and the particle diameter increased with increasing polymer concentration. Well‐ordered hexagonal microstructures were prepared by “Breath Figure” technique with the triblock copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The dispersion of single‐walled carbon nanotubes (SWNTs) in a non‐polar solvent is controlled with a series of polystyrene‐block‐polybutadiene‐block‐polystyrene (PSBS) block copolymers that contain cholesteryl chloroformate (CC) in side‐chains. Esterification of CC with the partially hydroxylated polybutadiene (PB) blocks allows one to tune the polarity of the block copolymers, which decreases with the amount of CC attached. An excellent dispersion of weak polar SWNTs is observed with PSBS that contains a partially hydroxylated PB block. The dispersion is then significantly deteriorated when the amount of non‐polar CC moieties increases in the block copolymers. A good dispersion is achieved with a polymer that gives rise to strong SWNT–polymer interactions, which ensures contact of the polymer molecules with the nanotube surface, rather than a good solubility of the polymer dispersant in solvent. The stability of the SWNTs in solution arises from unique needle‐like nanowires of the block copolymer aligned perpendicular to the nanotube axis.

  相似文献   


10.
Poly(ethylene glycol)‐b‐polycaprolactone (MPEG‐PCL) diblock copolymers were synthesized via a ring‐opening polymerization of ε‐CL monomers with MPEG as an initiator. Their solubilities and apparent critical micelle concentrations (CMC) in aqueous solution were investigated as well as the determination of the micellar hydrodynamic diameter using dynamic light scattering (DLS). As PCL block length increased, the solubility and CMC decreased while diameters of micelles increased. The gel–sol transition behaviors were investigated using a vial tilting method. Aqueous solutions of copolymers undergo a gel to sol transition with increase in temperature when their polymer concentrations are above a critical gel concentration (CGC). The CGC of the copolymers and gel–sol transition temperature are influenced by the PCL chain length. The tapping mode AFM was performed by imaging the freeze‐dried deposits from the copolymer solutions on mica to investigate a process from free chains to micelles and to gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3406–3417, 2006  相似文献   

11.
Conjugated block copolymers consisting of poly(3‐hexyl thiophene) (P3HT) and a thermoresponsive polymer poly(N‐isopropyl acrylamide) (PNIPAM) with varying composition have been synthesized by facile click reaction between alkyne terminated P3HT and azide terminated PNIPAM. The composition‐dependent solubility, thermoresponsive property in water, phase behavior, electrochemical, optical, and electronic properties of the block copolymers were systematically investigated. The block copolymers with higher volume fraction of PNIPAM form thermoresponsive spherical micelles with P3HT‐rich crystalline cores and PNIPAM coronas. Both X‐ray and atomic force microscopic studies indicated that the blocks copolymers showed well‐defined microphase separated nanostructures and the structure depended on the composition of the blocks. The electrochemical study of the block copolymers clearly demonstrated that the extent of charge transport through the block copolymer thin film was similar to P3HT homopolymer without any significant change in the band gap. The block copolymers showed improved or similar charge carrier mobility compared with the pure P3HT depending on the composition of the block copolymer. These P3HT‐b‐PNIPAM copolymers were interesting for fabrication of optoelectronic devices capable of thermal and moisture sensing as well as for studying the thermoresponsive colloidal structures of semiconductor amphiphilic systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1785–1794  相似文献   

12.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

13.
We report here a reversible self‐assembly formation system using block copolymers with thermo‐tunable properties. A series of double‐responsive block copolymers, poly(N‐isopropylacrylamide (NIPAAm))‐block‐poly(NIPAAm‐coN‐(isobutoxymethyl)acrylamide (BMAAm)) with two lower critical solution temperatures were synthesized by one‐pot atom transfer radical polymerization via sequential monomer addition. When dissolved in aqueous solution at room temperature, the block copolymers remained unimeric. Upon heating above room temperature, the block copolymers self‐assembled into micellar structures. The micelle formation temperature and the resulting diameter were controlled by varying the BMAAm content. 1H Nuclear Magnetic Resonance, dynamic light scattering, field‐emission scanning electron microscopy, and fluorescence spectra revealed the presence of a monodisperse nanoassembly, and demonstrated the assembly formation/inversion process was fully reversible. Moreover, a model hydrophobic molecule, pyrene, was successfully loaded into the micelle core by including pyrene in the original polymer solution. Further heating resulted in mesoscopic micelle aggregation and precipitation. This dual micelle and aggregation system will find utility in drug delivery applications as a thermal trigger permits both aqueous loading of hydrophobic drugs and their subsequent release. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
This work is to make carbon nanotubes dispersible in both water and organic solvents without oxidation and cutting nanotube threads. Polystyrene‐singlewall carbon nanotube (PS‐SWNT) composites were prepared with three different methods: miniemulsion polymerization, conventional emulsion polymerization, and mixing SWNT with PS latex. The two factors, crosslinking and surface coverage of PS are important factors for the mechanical and electrical properties, including dispersion states of SWNT in various solvents. The PS‐SWNT composite prepared via a conventional emulsion polymerization showed SWNT bundles entirely covered with PS, whereas the PS‐SWNT composite prepared via a miniemulsion polymerization showed SWNT partially covered with crosslinked PS nanoparticles. The method of mixing SWNTs with PS latex did not show the well dispersed state of carbon nanotubes because PS was not crosslinked and was dissolved in a solvent, and nanotubes separated from PS precipitated. So the PS nanoparticle‐SWNT composite had lower electrical resistance, and higher mechanical strength than the other composites made by the latter two methods. As the amount of SWNT increases, the bare surface area of SWNT increases and the electrical conductivity increases in the composite made by the miniemulsion polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 573–584, 2006  相似文献   

15.
The solubility behavior of well‐defined poly(methyl acrylate) homopolymers as well as polystyrene‐block‐poly (methyl acrylate) block copolymers is discussed in this contribution. A solubility screening in ethanol–water solvent mixtures was performed in a high‐throughput manner using parallel turbidimetry revealing upper critical solution temperature behavior for poly(methyl acrylate). Moreover, the self‐assembly behavior of the block copolymers into micellar structures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and cryo‐TEM revealing upper critical solution temperature switchability of the micelles, which was evaluated by DLS at different temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
This study synthesized thermo‐sensitive amphiphilic block‐graft PNiPAAm‐b‐(PαN3CL‐g‐alkyne) copolymers through ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) with hydroxyl‐terminated macroinitiator poly(N‐isopropylacrylamide) (PNiPAAm), substituting pendent chlorides with sodium azide. This was then used to graft various kinds of terminal alkynes moieties by means of the copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition (“click” reaction). 1H NMR, FTIR, and gel permeation chromatography (GPC) was used to characterize these copolymers. The solubility of the block‐graft copolymers in aqueous media was investigated using turbidity measurement, revealing a lower critical solution temperature (LCST) in the polymers. These solutions showed reversible changes in optical properties: transparent below the LCST, and opaque above the LCST. The LCST values were dependant on the composition of the polymer. With critical micelle concentrations (CMCs) in the range of 2.04–9.77 mg L?1, the block copolymers formed micelles in the aqueous phase, owing to their amphiphilic characteristics. An increase in the length of hydrophobic segments or a decrease in the length of hydrophilic segments amphiphilic block‐graft copolymers produced lower CMC values. The research verified the core‐shell structure of micelles by 1H NMR analyses in D2O. Transmission electron microscopy was used to analyze the morphology of the micelles, revealing a spherical structure. The average size of the micelles was in the range of 75–145 nm (blank), and 105–190 nm (with drug). High drug entrapment efficiency and drug loading content were observed in the drug micelles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
With the rapid progress in the development of supramolecular soft materials, examples of low‐molecular‐weight gelators (LMWGs) with the ability to immobilise both water and organic solvents by the same structural scaffold are very limited. In this paper, we report the development of pyrene‐containing peptide‐based ambidextrous gelators (AGs) with the ability to efficiently gelate both organic and aqueous solvents. The organo‐ and hydrogelation efficiencies of these gelators are in the range 0.7–1.1 % w/v in various organic solvents and 0.5–5 % w/v in water at certain acidic pH values (pH 2.0–4.0). Moreover, for the first time, AGs have been utilised to prepare single‐walled carbon‐nanotube (SWNT)‐included soft nanocomposites in both hydro‐ and organogel matrices. The influence of different non‐covalent interactions such as hydrogen bonding, hydrophobic, π–π and van der Waals interactions in self‐assembled gelation has been studied in detail by circular dichroism, FTIR, variable‐temperature NMR, 2D NOESY and luminescence spectroscopy. Interestingly, the presence of the pyrene moiety in the structure rendered these AGs intrinsically fluorescent, which was quenched upon successful integration of the SWNTs within the gel. The prepared hydro‐ and organogels along with their SWNT‐integrated nanocomposites are thermoreversible in nature. The supramolecular morphologies of the dried gels and SWNT–gel nanocomposites have been studied by transmission electron microscopy, fluorescence microscopy and polarising optical microscopy, which confirmed the presence of three‐dimensional self‐assembled fibrillar networks (SAFINs) as well as the integrated SWNTs. Importantly, rheological studies revealed that the inclusion of SWNTs within the ambidextrous gels improved the mechanical rigidity of the resulting soft nanocomposites up to 3.8‐fold relative to the native gels.  相似文献   

18.
The solubility nature of many medicines presents a challenge for successful delivery of these drugs to the body. Polymeric carriers are potentially viable as vessels for both the protection and transport of these medicinal substances. In an effort to generate polymeric materials for this desired application, A‐B‐A triblock copolymers have been synthesized with a central block composed of hydrophilic poly (ethylene glycol) (PEG) and flanking hydrophobic sequences composed of five valine units terminated with end groups of varying hydrophobicity. These copolymers were constructed by adding amino acids stepwise to the hydrophilic block using solution phase chemistry. The self‐assembly behavior of all polymers was investigated using fluorimetry with a pyrene probe. In general, copolymers with more hydrophobic end groups exhibited lower critical aggregation concentrations (CACs). Fmoc‐terminated copolymers displayed the lowest CAC of 0.032 mg/mL and demonstrated little cytotoxicity when exposed to SW620 colorectal cancer cells. Transmission electron micrographs show the presence of multiple compartments within these spherical assemblies, which may prove useful in encapsulating medicinal substances. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5381–5389, 2008  相似文献   

19.
A series of water‐soluble siloxane polymers with pendent phosphorylcholine (PC) and sulfobetaine (SB) zwitterions was prepared using thiol‐ene “click” chemistry. Specifically, well‐defined vinyl‐substituted siloxane homopolymers and block copolymers were functionalized with small molecule zwitterionic thiols at room temperature. Rapid and quantitative substitution of the pendent vinyl groups was achieved, and zwitterionic polysiloxanes of narrow molecular weight distribution were obtained. The PC‐ and SB‐substituted polymers were found to be readily soluble in pure, salt‐free water. Critical micelle concentrations (CMCs) of these polymers in water were measured using a pyrene fluorescence probe, with CMC values estimated to be <0.01 g/L. Polymer aggregates were studied by dynamic light scattering, and the micelles generated from the PC block copolymers were visualized, after drying, by transmission electron microscopy. Aqueous solutions of these zwitterionic polysiloxanes significantly reduced the oil‐water interfacial surface tension, functioning as polymer amphiphiles that lend stability to oil‐in‐water emulsions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 127–134  相似文献   

20.
Dendrimer‐like star‐branched polymers recently developed as a new class of hyperbranched polymers, which resemble well‐known dendrimers in branched architecture, but comprise polymer chains between junctions, are reviewed in this highlight article. In particular, we focus on the precise synthesis of various dendrimer‐like star‐branched polymers and block copolymers by the recently developed methodology based on iterative divergent approach using living anionic polymers and 1,1‐bis(3‐tert‐butyldimethylsilyloxymethylphenyl)ethylene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6659–6687, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号