首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Computer algebra systems (CAS) are powerful tools for obtaining analytical expressions for many engineering applications in both academic and industrial environments. CAS have been used in this paper to generate exact expressions for the stiffness matrix of an 8‐node plane elastic finite element. The Maple software system was used to identify six basic formulas from which all the terms of the stiffness matrix could be obtained. The formulas are functions of the Cartesian coordinates of the corner nodes of the element, and elastic parameters Young's modulus and Poisson's ratio. Many algebraic manipulations were performed on the formulas to optimize their efficiency. The redaction in CPU time using the exact expressions as opposed to the classical Gauss–Legendre numerical integration approach was over 50%. In an additional study of accuracy, it was shown that the numerical approach could lead to quite significant errors as compared with the exact approach, especially as element distortion was increased.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

2.
The finite element method (FEM) is a numerical method for approximate solution of partial differential equations with appropriate boundary conditions. This work describes a methodology for generating the elastic stiffness matrix of an axisymmetric eight‐noded finite element with the help of Computer Algebra Systems. The approach is described as “semi analytical” because the formulation mimics the steps taken using Gaussian numerical integration techniques. The semianalytical subroutines developed herein run 50[percnt] faster than the conventional Gaussian integration approach. The routines, which are made publically available for download,1 should help FEM researchers and engineers by providing significant reductions of CPU times when dealing with large finite element models. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

4.
For the analysis of wave propagation at high frequencies, the spectral finite element method (SFEM) is under investigation. In contrast to the conventional finite element method high-order shape functions are used. They are composed of Lagrange polynomials with nodes at the Gauß-Lobatto-Legendre points. The Gauß-Lobatto-Legendre integration scheme is applied in order to obtain a diagonal mass matrix. So, the resulting system equations can be solved efficiently. In the numerical examples, spectral finite elements with shape functions of different order are applied to a plane strain problem. The numerical examples cover structures without and with stiffness discontinuities. It is shown that the results agree well with analytical solutions. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H, h satisfy the relation h = H2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.  相似文献   

6.
This paper discusses the analytical elastostatic stiffness modeling of parallel manipulators (PMs) considering the compliance of the link and joint. The proposed modeling is implemented in three steps: (1) the limb constraint wrenches are formulated based on screw theory; (2) the strain energy of the link and the joint is formulated using material mechanics and a mapping matrix, respectively, and the concentrated limb stiffness matrix corresponding to the constraint wrenches is obtained by summing the strain energy of the links and joints in the limb; and (3) the overall stiffness matrix is assembled based on the deformation compatibility equations. The strain energy factor index (SEFI) is adopted to describe the influence of the elastic components on the stiffness performance of the mechanism. Matrix structural analysis (MSA) using Timoshenko beam elements is applied to obtain analytical expressions for the compliance matrices of different joints through a three-step process: (1) formulate the element stiffness equation for each element; (2) extend the element stiffness equation to obtain the element contribution matrix, allowing the extended overall stiffness matrix to be obtained by summing the element contribution matrices; and (3) determine the stiffness matrices of joints by extracting the node stiffness matrix from the extended overall stiffness matrix and then releasing the degrees of freedom of twist. A comparison with MSA using Euler–Bernoulli beam elements demonstrates the superiority of using Timoshenko beam elements. The 2PRU-UPR PM is presented to illustrate the effectiveness of the proposed approach. Finally, the global SEFI and scatter matrix are used to identify the elastic component with the weakest stiffness performance, providing a new approach for effectively improving the stiffness performance of the mechanism.  相似文献   

7.
In this paper we study the geometric numerical solution of the so called “good” Boussinesq equation. This goal is achieved by using a convenient space semi‐discretization, able to preserve the corresponding Hamiltonian structure, then using energy‐conserving Runge–Kutta methods in the Hamiltonian boundary value method class for the time integration. Numerical tests are reported, confirming the effectiveness of the proposed method.  相似文献   

8.
A space‐time finite element method is introduced to solve the linear damped wave equation. The scheme is constructed in the framework of the mixed‐hybrid finite element methods, and where an original conforming approximation of H(div;Ω) is used, the latter permits us to obtain an upwind scheme in time. We establish the link between the nonstandard finite difference scheme recently introduced by Mickens and Jordan and the scheme proposed. In this regard, two approaches are considered and in particular we employ a formulation allowing the solution to be marched in time, i.e., one only needs to consider one time increment at a time. Numerical results are presented and compared with the analytical solution illustrating good performance of the present method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

9.
S. Le Borne 《PAMM》2003,2(1):21-24
Hierarchical matrices (ℋ︁‐matrices) provide a technique for the sparse approximation of large, fully populated matrices. This technique has been shown to be applicable to stiffness matrices arising in boundary element method applications where the kernel function displays certain smoothness properties. The error estimates for an approximation of the kernel function by a separable function can be carried over directly to error estimates for an approximation of the stiffness matrix by an ℋ︁‐matrix, using a certain standard partitioning and admissibility condition for matrix blocks. Similarly, ℋ︁‐matrix techniques can be applied in the finite element context where it is the inverse of the stiffness matrix that is fully populated. Here one needs a separable approximation of Green's function of the underlying boundary value problem in order to prove approximability by matrix blocks of low rank. Unfortunately, Green's function for the convection‐diffusion equation does not satisfy the required smoothness properties, hence prohibiting a straightforward generalization of the separable approximation through Taylor polynomials. We will use Green's function to motivate a modification in the (hierarchical) partitioning of the index set and as a consequence the resulting hierarchy of block partitionings as well as the admissibility condition. We will illustrate the effect of the proposed modifications by numerical results.  相似文献   

10.
B. Burgeth 《PAMM》2002,1(1):466-467
The fast and accurate evaluation of expected values involving the probabilistic β‐distributions poses severe problems to standard numerical integration schemes. An efficient algorithm to evaluate such integrals is presented based on approximation and analytical evaluation rather than numerical integration. Starting from an extension of the 2‐parameter family of β‐distributions a criterion is derived to assess the correctness of any integration scheme in the numerically demanding limiting cases of this family.  相似文献   

11.
The finite element method has been well established for numerically solving parabolic partial differential equations (PDEs). Also it is well known that a too large time step should not be chosen in order to obtain a stable and accurate numerical solution. In this article, accuracy analysis shows that a too small time step should not be chosen either for some time‐stepping schemes. Otherwise, the accuracy of the numerical solution cannot be improved or can even be worsened in some cases. Furthermore, the so‐called minimum time step criteria are established for the Crank‐Nicolson scheme, the Galerkin‐time scheme, and the backward‐difference scheme used in the temporal discretization. For the forward‐difference scheme, no minimum time step exists as far as the accuracy is concerned. In the accuracy analysis, no specific initial and boundary conditions are invoked so that such established criteria can be applied to the parabolic PDEs subject to any initial and boundary conditions. These minimum time step criteria are verified in a series of numerical experiments for a one‐dimensional transient field problem with a known analytical solution. The minimum time step criteria developed in this study are useful for choosing appropriate time steps in numerical simulations of practical engineering problems. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

12.
Time‐dependent differential equations can be solved using the concept of method of lines (MOL) together with the boundary element (BE) representation for the spatial linear part of the equation. The BE method alleviates the need for spatial discretization and casts the problem in an integral format. Hence errors associated with the numerical approximation of the spatial derivatives are totally eliminated. An element level local cubic approximation is used for the variable at each time step to facilitate the time marching and the nonlinear terms are represented in a semi‐implicit manner by a local linearization at each time step. The accuracy of the method has been illustrated on a number of test problems of engineering significance. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006  相似文献   

13.
A competitive nonstandard semi‐explicit finite‐difference method is constructed and used to obtain numerical solutions of the diffusion‐free generalized Nagumo equation. Qualitative stability analysis and numerical simulations show that this scheme is more robust in comparison to some standard explicit methods such as forward Euler and the fourth‐order Runge‐Kutta method (RK4). The nonstandard scheme is extended to construct a semi‐explicit and an implicit scheme to solve the full Nagumo reaction‐diffusion equation. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 363–379, 2003.  相似文献   

14.
We propose a spectral collocation method for the numerical solution of the time‐dependent Schrödinger equation, where the newly developed nonpolynomial functions in a previous study are used as basis functions. Equipped with the new basis functions, various boundary conditions can be imposed exactly. The preferable semi‐implicit time marching schemes are employed for temporal discretization. Moreover, the new basis functions build in a free parameter λ intrinsically, which can be chosen properly so that the semi‐implicit scheme collapses to an explicit scheme. The method is further applied to linear Schrödinger equation set in unbounded domain. The transparent boundary conditions are constructed for time semidiscrete scheme of the linear Schrödinger equation. We employ spectral collocation method using the new basis functions for the spatial discretization, which allows for the exact imposition of the transparent boundary conditions. Comprehensive numerical tests both in bounded and unbounded domain are performed to demonstrate the attractive features of the proposed method.  相似文献   

15.
We study numerically the semi‐classical limit for three‐coupled long wave–short wave interaction equations. The Fourier–Galerkin semi‐discretization is proved to be spectrally convergent in an appropriate energy space. We propose a split‐step Fourier method in the semi‐classical regime with the discussion of the meshing strategy, which is necessary to obtain correct numerical solution. Plane wave solution with weak and strong initial phases, solitary wave solution and Gaussian solution are considered to investigate the semi‐classical limit.  相似文献   

16.
Generalizations of Boolean elements of a BL‐algebra L are studied. By utilizing the MV‐center MV(L) of L, it is reproved that an element xL is Boolean iff xx * = 1 . L is called semi‐Boolean if for all xL, x * is Boolean. An MV‐algebra L is semi‐Boolean iff L is a Boolean algebra. A BL‐algebra L is semi‐Boolean iff L is an SBL‐algebra. A BL‐algebra L is called hyper‐Archimedean if for all xL, xn is Boolean for some finite n ≥ 1. It is proved that hyper‐Archimedean BL‐algebras are MV‐algebras. The study has application in mathematical fuzzy logics whose Lindenbaum algebras are MV‐algebras or BL‐algebras. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Gregor Kotucha  Klaus Hackl 《PAMM》2004,4(1):336-337
The discretization of topology design problems on the basis of the finite‐element‐method results in general in large‐scale combinatorial optimization problems, which are usually relaxed by the introduction of a continuous material density function as design variable. To avoid optimal designs containing unfavourable microstructures such as the well‐known “checkerboard” patterns, the relaxed problem can be regularized by the X‐SIMP‐approach, which penalizes intermediate density values as well as high density gradients within the design domain. In this context we discuss numerical aspects of the X‐SIMP‐based regularization such as the discretization of the regularized problem, the formulation of the corresponding stiffness matrix and the numerical solution of the discretized problem. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Markus Peters  Klaus Hackl 《PAMM》2005,5(1):355-356
The eXtended Finite Element Method (XFEM) is a very efficient way to reduce mesh dependencies when analysing crack growth. Displacements and stresses around the crack tip are calculated using additional shape functions which span the analytical displacement field around a crack tip. In this paper the following numerical aspects of the XFEM are discussed: • The integration of the stiffness matrix has to be done accurately. Therefore singular functions have to be integrated and an error estimator must be available. We will compare the estimated error and the necessary number of integration points when using different routines. • In case a crack truncates a very small part of a finite element the global stiffness matrix may become singular. One possibility to overcome this problem is to delete some of the enhanced degrees of freedom in the finite element analysis. Another way is to remove zero eigenvalues in the global stiffness matrix algebraically by a stabilization term. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
This note outlines an algorithm for solving the complex ‘matrix Procrustes problem’. This is a least‐squares approximation over the cone of positive semi‐definite Hermitian matrices, which has a number of applications in the areas of Optimization, Signal Processing and Control. The work generalizes the method of Allwright (SIAM J. Control Optim. 1988; 26 (3):537–556), who obtained a numerical solution to the real‐valued version of the problem. It is shown that, subject to an appropriate rank assumption, the complex problem can be formulated in a real setting using a matrix‐dilation technique, for which the method of Allwright is applicable. However, this transformation results in an over‐parametrization of the problem and, therefore, convergence to the optimal solution is slow. Here, an alternative algorithm is developed for solving the complex problem, which exploits fully the special structure of the dilated matrix. The advantages of the modified algorithm are demonstrated via a numerical example. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This study presents two computational schemes for the numerical approximation of solutions to eddy viscosity models as well as transient Navier–Stokes equations. The eddy viscosity model is one example of a class of Large Eddy Simulation models, which are used to simulate turbulent flow. The first approximation scheme is a first order single step method that treats the nonlinear term using a semi‐implicit discretization. The second scheme employs a two step approach that applies a Crank–Nicolson method for the nonlinear term while also retaining the semi‐implicit treatment used in the first scheme. A finite element approximation is used in the spatial discretization of the partial differential equations. The convergence analysis for both schemes is discussed in detail, and numerical results are given for two test problems one of which is the two dimensional flow around a cylinder. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号