首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structurally well‐defined end functionalized isotactic polypropylene (iPP) is prepared by conducting a selective chain transfer reaction during the isospecific polymerization of propylene in the presence of norbornadiene (NBD) and hydrogen using rac‐Me2Si(2‐Me‐4‐Ph‐Ind)2 ZrCl2/MAO as the catalyst. The production of NBD‐capped iPP involves a unique consecutive chain transfer reaction, first to NBD and then to hydrogen, for situating the incorporated NBD at the iPP chain end. The NBD end group of NBD‐capped iPP can be converted into other reactive functional group through functional group transformation reactions. The resulting functional group end‐capped iPP can be used for the construction of stereoregular block copolymers (e.g., iPP‐b‐PMMA and iPP‐b‐PS) through postpolymeriztion reactions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The Cp*La(BH4)2(THF)2/n‐butylethylmagnesium (BEM) catalytic system has been assessed for the coordinative chain transfer copolymerization of styrene and 1‐hexene. Poly(styrene‐co‐hexene) statistical copolymers were obtained with number‐average molecular weight up to 7600 g/mol, PDI around 1.4 and 1.5 and up to 23% hexene content. The occurence of chain transfer reactions in the presence of excess BEM is established in the course of the statistical copolymerization. Thanks to this transfer process, the quantity of 1‐hexene in the copolymer is increased by a factor of about 3 for high ratio of hexene in the feed, extending the range of our concept of a chain transfer induced control of the composition of statistical copolymers to poly(styrene‐co‐hexene) copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The copolymerization of styrene (St) with a styrene‐terminated polyisoprene macromonomer (SIPM) by a nickel(II) acetylacetonate [Ni(acac)2] catalyst in combination with methylaluminoxane (MAO) was investigated. A SIPM with a high terminal degree of functionalization and a narrow molecular weight distribution was used for the copolymerization of St. The copolymerization proceeded easily to give a high molecular weight graft copolymer. After fractionation of the resulting copolymer with methyl ethyl ketone, the insoluble part had highly isotactic polystyrene in the main chain and polyisoprene in the side chain. Lowering the MAO/Ni molar ratio and the polymerization temperature were favorable to producing isospecific active sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1241–1246, 2000  相似文献   

4.
Reversible addition–fragmentation chain transfer (RAFT) polymerizations of styrene under microwave irradiation (MI), with or without azobisisobutyronitrile, were successfully carried out in bulk at 72 and 98 °C, respectively. The results showed that the polymerizations had living/controlled features, and there was a significant enhancement of the polymerization rates under MI in comparison with conventional heating (CH) under the same conditions. The polymer structures were characterized with 1H and 13C NMR. The results showed the same structure for both polymers obtained by MI and CH. Successful chain‐extension experimentation further demonstrated the livingness of the RAFT polymerization carried out under MI. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6810‐6816, 2006  相似文献   

5.
Chain‐transfer constants were evaluated for n‐dodecanethiol in the homopolymerization of styrene (S) and methyl methacrylate (MMA). The polymerizations were carried out in benzene at 50 °C with different amounts of 2,2′‐azobisisobutyronitrile as the initiator. The new chain length distribution (CLD) analytical method was used and compared to the traditional Mayo method. The chain‐transfer‐constant values were independent of the initiator concentration and slightly higher (by a factor of 1.1 for MMA and 1.2 for S) when obtained according to the CLD method compared to the Mayo method. The chain‐transfer constant for S was 20 times higher than for MMA. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 170–178, 2000  相似文献   

6.
Dispersion polymerization of styrene with n‐dodecyl mercaptans (DDM) as the chain transfer agent was investigated. PS particles with various molecular weight, molecular weight distribution (MWD), and particle diameter were prepared by varying the concentration of DDM and also the addition time of DDM before and after the particle nucleation. The average particle diameter was increased, whereas polymerization rate, molecular weight, and MWD were decreased with increasing DDM concentrations from 0 to 10 wt %. The effect of addition of DDM before and after particle nucleation was studied at 0.4, 0.8, and 1.0 wt % DDM. The addition of DDM before particle nucleation produced PS particles of relatively large particle diameter and low molecular weight when compared with the addition of DDM after particle nucleation. This study shows that particle nucleation occurs in about 5–6 min, which corresponds to the 15–16% conversion, 372–378 nm in Dn , and provides a facile way to control the particle size and interesting information about the particle formation using the delayed addition of DDM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6612–6620, 2008  相似文献   

7.
《印度化学会志》2021,98(7):100087
Reversible addition-fragmentation chain transfer (RAFT) polymerization has been examined for the synthesis of poly (styrene sulfonyl chloride) (PSSC) of high molecular weight and narrow polydispersity index (PDI). PSSC, contains reactive sulfonyl chloride that can allow use of organic solvent for membrane casting, and chemical modification through reactive sulfonyl groups. For PSSC preparation, end-capped styrene i.e. styrene sulfonyl chloride (SSC) is used as a monomer, which is derived from sodium 4-vinylbenzenesulfonate by chlorination with thionyl chloride. Fourier transform infrared spectroscopy, Raman spectroscopy and Proton nuclear magnetic resonance spectroscopy, have been successfully used to confirm the polymer architecture. End-group of PSSC containing RAFT agent (Cyanomethyl N-methyl-N-phenylcarbamodithioate), is also confirmed by fragmentation analysis using Gas chromatography-mass spectroscopy. Evaluation of PSSC by X-ray diffraction and differential scanning calorimetry showed that resulting polymer is predominantly amorphous in nature and has a glass transition temperature of 119 ​°C. Gel permeation chromatography data reveals formation of high molecular weight (84 ​kDa) PSSC with and low PDI (1.4). Moreover, PSSC can be converted to polyelectrolyte and can be crosslinked by interfacial polymerization concept; hence, it would have considerable prospective for membrane preparation for fuel cell and water purification.  相似文献   

8.
Three new ureidopyrimidinone(UPy)‐functionalized chain‐transfer agents (CTAs) have been synthesized for use in reversible addition‐fragmentation chain transfer (RAFT) polymerization. These UPy‐CTAs are able to polymerize a wide variety of vinyl monomers to yield UPy‐functionalized polymers, including homopolymers, block copolymers, and amphiphilic block copolymers. These polymers have been characterized via 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), UV/visible spectroscopy and differential scanning calorimetry (DSC) to demonstrate end‐group fidelity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
We present a systematic study of incorporating carboxyl groups into latex particles to enhance colloidal stability and the physical properties of the latex. Statistical copolymers of methacrylic acid and methyl methacrylate) were synthesized via catalytic chain transfer polymerization (CCTP) in emulsion. The vinyl‐terminated oligomers were in turn successfully utilized as chain transfer agents for the formation of diblock and pseudo triblock copolymers via sulfur‐free reversible addition–fragmentation chain transfer polymerization (SF‐RAFT). These copolymers were characterized using 1H NMR, size exclusion chromatography (SEC), dynamic light scattering (DLS), dynamic mechanical analysis (DMA), contact angle measurements and matrix‐assisted laser desorption/ionization time of flight mass spectroscopy (MALDI‐TOF‐MS) techniques. © 2019 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, E1–E9  相似文献   

10.
The cobaloxime‐mediated catalytic‐chain‐transfer polymerization of styrene at 60 °C was studied with an emphasis on the effects of monomer purification and polymerization conditions. Commonly used purification methods, such as column chromatography and simple vacuum distillation, were not adequate for obtaining kinetic data to be used in mechanistic modeling. A purification regime involving inhibitor removal with basic alumina, followed by polymerization of the styrene in the presence of the cobaloxime and subsequent vacuum distillation, was found to be essential to this end. It was then possible to quantitatively investigate effects such as the initiator concentration and conversion dependencies of the apparent chain‐transfer constant that resulted from the occurrence of cobalt–carbon bond formation. A value of about 9 × 103 was found for the true chain‐transfer constant to cobaloxime boron fluoride, that is, its value in the absence of cobalt–carbon bond formation. Furthermore, previous predictions were confirmed: the measured chain‐transfer constant decreased with increasing initiator concentration and conversion. Finally, it was confirmed that the presence of light increased the amount of free Co(II) catalyst in agreement with other studies. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 752–765, 2003  相似文献   

11.
Copper‐catalyzed controlled/living radical polymerization (LRP) of styrene (St) was conducted using the silica gel‐supported CuCl2/N,N,N′,N′,N″‐pentamethyldiethylenetriamine (SG‐CuCl2/PMDETA) complex as catalyst at 110 °C in the presence of a definite amount of air. This novel approach is based on in situ generation and regeneration of Cu(I) via electron transfer reaction between phenols and Cu(II). Sodium phenoxide or p‐methoxyphenol was used as a reducing agent of Cu(II) complexes in LRP. The number–average molecular weight, Mn,GPC, increases linearly with monomer conversion and agrees well with the theoretical values up to 85% conversion The molecular weight distribution, Mw/Mn, decreases as the conversion increases and reaches values below 1.2. The catalyst was recovered in aerobic condition and reused in copper‐catalyzed LRP of St. For the second run, the number–average molecular weights increased with monomer conversion and the polydispersities decreased as the polymerization proceeded and reached to the value <1.3 at 81% conversion. The recycled catalyst retained 90% of its original activity in the subsequent polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 77–87, 2006  相似文献   

12.
We report the first instance of facile synthesis of dumbbell‐shaped dendritic‐linear‐dendritic triblock copolymer, [G‐3]‐PNIPAM‐[G‐3], consisting of third generation poly(benzyl ether) monodendrons ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM), via reversible addition‐fragmentation chain transfer (RAFT) polymerization. The key step was the preparation of novel [G‐3]‐based RAFT agent, [G‐3]‐CH2SCSSCH2‐[G‐3] (1), from third‐generation dendritic poly(benzyl ether) bromide, [G‐3]‐CH2Br. Due to the bulky nature of [G‐3]‐CH2Br, its transformation into trithiocarbonate 1 cannot go to completion, a mixture containing ~80 mol % of 1 and 20 mol % [G‐3]‐CH2Br was obtained. Dumbbell‐shaped [G‐3]‐PNIPAM310‐[G‐3] triblock copolymer was then successfully obtained by the RAFT polymerization of N‐isopropylacylamide (NIPAM) using 1 as the mediating agent, and trace amount of unreacted [G‐3]‐CH2Br was conveniently removed during purification by precipitating the polymer into diethyl ether. The dendritic‐linear‐dendritic triblock structure was further confirmed by aminolysis, and fully characterized by gel permeation chromatography (GPC) and 1H‐NMR. The amphiphilic dumbbell‐shaped triblock copolymer contains a thermoresponsive PNIPAM middle block, in aqueous solution it self‐assembles into spherical nanoparticles with the core consisting of hydrophobic [G‐3] dendritic block and stabilized by the PNIPAM central block, forming loops surrounding the insoluble core. The micellar properties of [G‐3]‐PNIPAM310‐[G‐3] were then fully characterized. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1432–1445, 2007  相似文献   

13.
The photochemical reaction between three A5‐steroids (1–3) and a series of substituted 1,4‐benzoquinones and their mechanistic study were reported. The reaction in nitrogen atmosphere led to the formation of three products including the steroid‐quinone coupling compound (A), 7‐hydroxy derivatives of Δ5‐steroids (B) and substituted 1, 4‐hydroquinone (C). Both chemical and spectrometric evidences such as UV‐Visible spectra, ESR, chemically induced dynamic nuclear polarization (CIDNP) and cyclic voltammetry (CV) verified that the title reaction underwent a predominant photoinduced electron transfer pathway via the triplet quinone.  相似文献   

14.
Air‐stable symmetric Schiff base have been synthesized and proved to be efficient ligands for Suzuki–Miyaura reaction between aryl bromides and arylboronic acids using PdCl2(CH3CN)2 as palladium source under aerobic conditions. The coupling reaction proceeded smoothly using N,N‐bis(anthracen‐9‐ylmethylene)benzene‐1,2‐diamine (L7) as ligand to provide 4‐substituted styrene compounds in good yields. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Styrene has been grafted from crosslinked poly(divinylbenzene) core microspheres by both reversible addition fragmentation chain transfer (RAFT) polymerization and conventional free radical polymerization. The core microspheres were prepared by precipitation polymerization. Crosslinked poly(DVB) core microspheres containing double bonds on the particle surface can be used directly to graft polymers from the surface by RAFT without prior modification of the core microspheres. The RAFT agent 1‐phenylethyl dithiobenzoate (PEDB) was used: Particle sizes increased from 2 μm up to 3.06 μm, and the particle weight increased by up to 6.5%. PEDB controls the particle weight gain, the particle volume, and the molecular weight of the soluble polymer. PEDB was also used to synthesize core poly(DVB) RAFT microspheres that contain residual RAFT end groups on the surface and within the particle. Styrene was subsequently grafted from the surface of these core poly(DVB) RAFT microspheres. The generated microspheres were characterized by 1H‐NMR spectroscopy, focused ion beam (FIB) milling, Coulter particle sizing, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5067–5076, 2004  相似文献   

16.
Radical polymerizations of di‐n‐butyl itaconate were investigated. Unexpected resonances (C resonances) were observed in 13C NMR spectra of C?O of poly(di‐n‐butyl itaconate)s [poly(DBI)s] obtained at temperatures higher than 60 °C, although two kinds of carbonyl groups showed splittings due to triad tacticities in the spectra of polymers obtained at lower temperatures. The poly(DBI)s formed by the different kinds of initiators or formed in the presence of chain‐transfer agents showed hardly any changes in the intensities of the C resonances; this indicated that the C resonances were not due to the structures formed through initiating and terminating reactions. The poly(DBI)s obtained at different yields showed only a slight increase in the intensities of the C resonances with the yield, which suggested that the C resonances were not attributable to the intermolecular chain‐transfer reaction to the monomer and/or polymer. However, the intensities of the C resonances significantly increased with a decreasing feed monomer concentration; this suggested that intramolecular chain‐transfer reactions took place at high temperatures. Furthermore, a Cu complex‐catalyzed atom transfer radical polymerization mechanism was revealed to be effective for suppressing the intramolecular chain‐transfer reaction at 60 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2415–2426, 2002  相似文献   

17.
Fluorescence end‐labeled polystyrene (PS) with heteroaromatic carbazole or indole group were prepared conveniently via reversible addition‐fragmentation chain transfer (RAFT) polymerization using dithiocarbamates, ethyl 2‐(9H‐carbazole‐9‐carbonothioylthio)propanoate (ECCP) and benzyl 2‐phenyl‐1H‐indole‐1‐carbodithioate (BPIC) as RAFT agents. The end functionality of obtained PS with different molecular weights was high. The steady‐state and the time‐resolved fluorescence techniques had been used to study the fluorescence behaviors of obtained end‐labeled PS. The fluorescence of dithiocarbamates resulting PS in solid powder cannot be monitored; however, they exhibited structured absorptions and emissions in solvent DMF and the fluorescence lifetimes of PS had no obvious change with molecular weights increasing. These observations suggested that the polymer chains were possibly stretched adequately in DMF, that is, the fluorescence end group was exposed into solvent molecules and little quenching of excited state occurred upon incorporation into polymer chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6198–6205, 2008  相似文献   

18.
An investigation into the aminolysis of ω‐end groups of RAFT‐polymers and simultaneous thiol‐ene reactions with ene‐bearing compounds is described. Three different polymers, P(MMA), P(HPMA), and P(NIPAAm), with low PDIs were synthesized using dithiobenzoate and trithiocarbonate RAFT agents. P(NIPAAm) synthesized with trithiocarbonate RAFT agent and P(HPMA) synthesized with dithiobenzoate RAFT agent were both functionalized with a methacrylate‐modified mannose and a maleimide‐modified biotin via one‐pot simultaneous aminolysis and thiol‐ene reactions with product yields above 85%. The presence of ene‐compounds during aminolysis was shown to prevent the formation of disulfide interchain crosslinking. Using the same approach, P(MMA), P(HPMA), and P(NIPAAm) were converted to (meth)acrylate macromonomers with high yields (>80%). In the case of P(MMA), the simultaneous aminolysis and thiol‐ene addition prevented any intrachain side reactions, i.e., thiolactone formation. New architectures such as graft and block copolymers were successfully generated from the macromonomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3773–3794, 2009  相似文献   

19.
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008  相似文献   

20.
A series of dodecyl‐based monofunctional trithiocarbonate chain transfer agents (CTAs) were successfully synthesized, toward the reversible addition‐fragmentations chain transfer (RAFT) polymerization of styrene. The CTAs were used as initiators for RAFT polymerization, in the absence of the conventional free radical initiator, at higher temperature. Polystyrene (PS) of narrow polydispersity index (PDI) is synthesized. Subsequently, poly(styrene‐b‐benzyl methacrylate) diblock and poly(styrene‐b‐benzyl methacrylate‐b‐2‐vinyl pyridine) triblock copolymers were synthesized from the PS macro‐RAFT agent by simply heating with the second and third monomer, respectively. These experiments suggest that it should be possible to control the RAFT polymerization initiated by a CTA through the adjustment of the temperature of polymerization in such manner that initiation is tailored to proceed at faster rate (at higher temperature) in comparison to propagation (lower temperature). For the specific CTAs studied in this work, the polymerization rate of styrene was high in the case of the reinitiating cyano (CN)‐substituted group (R group) compared to the other groups studied. The results further show that 4‐cyano pentanoic acid group is superior to the other R groups used for the RAFT polymerization of styrene, especially based on the polydispersity at a given conversion as well as the variation in the expected and experimental number‐average‐molecular weights. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号