首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper is concerned with a model which describes the interaction of sound and elastic waves in a structural acoustic chamber in which one “wall” is flexible and flat. The model is new in the sense that the composite dynamics of the three-dimensional structure is described by the linearized equations for a gas defined on the interior of the chamber and the Reissner-Mindlin plate equations on the two-dimensional flat wall of the chamber, while, if a two-dimensional acoustic chamber is considered, the Timoshenko beam equations describe the deflections of the one-dimensional “wall.” With a view to achieving uniform stabilization of the structure linear feedback boundary damping is incorporated in the model, viz. in the wave equation for the gas and in the system of equations for the vibrations of the elastic medium. We present the uniform stability result for the case of a two-dimensional chamber and outline the method for the three-dimensional model which shows strong resemblance with the system of dynamic plane elasticity.  相似文献   

2.
The main result of this paper provides uniform decay rates obtained for the energy function associated with a three-dimensional structural acoustic model described by coupled system consisting of the wave equation and plate equation with the coupling on the interface between the acoustic chamber and the wall. The uniform stabilization is achieved by introducing a nonlinear dissipation acting via boundary forces applied at the edge of the plate and viscous or boundary damping applied to the wave equation. The results obtained in this paper extend, to the non-analytic, hyperbolic-like setting, the results obtained previously in the literature for acoustic problems modeled by structurally damped plates (governed by analytic semigroups). As a bypass product, we also obtain optimal uniform decay rates for the Euler Bernoulli plate equations with nonlinear boundary dissipation acting via shear forces only and without (i) any geometric conditions imposed on the domain ,(ii) any growth conditions at the origin imposed on the nonlinear function. This is in contrast with the results obtained previously in the literature ([22] and references therein).  相似文献   

3.
In this study we consider a coupled system of partial differential equations (PDE's) which describes a certain structural acoustics interaction. One component of this PDE system is a wave equation, which serves to model the interior acoustic wave medium within a given three dimensional chamber Ω. This acoustic wave equation is coupled on a boundary interface Γ0 to a two dimensional system of thermoelasticity: this thermoelastic PDE is composed in part of a structural beam or plate equation, which governs the vibrations of flexible wall portion Γ0 of the chamber Ω. Moreover, this elastic dynamics is coupled to a heat equation which also evolves on Γ0, and which imparts a thermal damping onto the entire structural acoustic system. As we said, the interaction between the wave and thermoelastic PDE components takes place on the boundary interface Γ0, and involves coupling boundary terms which are above the level of finite energy. We analyze the stability properties of this coupled structural acoustics PDE model, in the absence of any additive feedback dissipation on the hard walls Γ1 of the boundary . Under a certain geometric assumption on Γ1, an assumption which has appeared in the literature in connection with structural acoustic flow, and which allows for the invocation of a recently derived microlocal boundary trace estimate, we show that classical solutions of this thermally damped structural acoustics PDE decay uniformly to zero, with a rational rate of decay.  相似文献   

4.
We consider a structural acoustic wave equation with nonlinear acoustic boundary conditions. This is a coupled system of second and first order in time partial differential equations, with boundary conditions on the interface. We prove wellposedness in the Hadamard sense for strong and weak solutions. The main tool used in the proof is the theory of nonlinear semigroups. We present the system of partial differential equations as a suitable Cauchy problem . Though the operator A is not maximally dissipative we are able to show that it is a translate of a maximally dissipative operator. The obtained semigroup solution is shown to satisfy a suitable variational equality, thus giving weak solutions to the system of PDEs. The results obtained (i) dispel the notion that the model does not generate semigroup solutions, (ii) provide treatment of nonlinear models, and (iii) provide existence of a correct state space which is invariant under the flow-thus showing that physical model under consideration is a dynamical system. The latter is obtained by eliminating compatibility conditions which have been assumed in previous work (on the linear case).  相似文献   

5.
A mathematical model of degradation of a deuterium-tritium (D-T) fuel layer located on the interior wall of a spherical shell is proposed. Such a shell with a solid layer frozen on it is a laser target that is employed in controlled thermonuclear fusion. As the laser target is delivered from the cryogenic chamber to the focus of the laser beam, the chamber stays, during a certain time interval, in a warm-gas cloud. During this time interval, the D-T layer degrades, and, in particular, its surface becomes nonideal. The mathematical model is formulated as a Stefan problem for a system of parabolic equations with nonlinear initial-boundary conditions. Small-parameter methods are applied to obtain an analytic solution to this problem, and the time during which the changes in the geometric parameters of the target’s fuel layer do not exceed technologically admissible values is estimated.  相似文献   

6.
A model of contact between an elastic half space and a rigid base with a shallow surface rectangular hole is proposed. The hole contains an incompressible liquid and gas. The liquid occupies the middle part of the hole and forms a capillary bridge between the opposite surfaces. The remaining volume of the hole is filled with gas under a constant pressure. The liquid completely wets the surfaces of the bodies. The pressure drop at the liquid–gas interface caused by the surface tension is defined by the Laplace formula. The corresponding plane contact problem for the elastic half space is essentially nonlinear because the pressure of the liquid and the length of the capillary in the contact-boundary conditions are not known in advance and depend on the external load. The problem is reduced to a system of three equations (a singular integral equation for the function of height of the hole and two transcendental equations for the length of the capillary and the height of the meniscus). An analytic-numerical procedure for the solution of these equations is proposed. Dependences of the length of the capillary and the pressure drop at the liquid–gas interface on the external load, volume of liquid, and its surface tension are analyzed. Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 1, pp. 150–156, January–March, 2008.  相似文献   

7.
The free and forced vibrations of a Kelvin-Voigt viscoelastic beam, supported by a nonlinear spring are analytically investigated in this paper. The governing equations of motion along with the compatibility conditions are obtained employing Newton’s second law of motion and constitutive relations. The viscoelastic beam material is constituted by the Kelvin-Voigt rheological model, which is a two-parameter energy dissipation model. The method of multiple timescales, a perturbation technique, is employed which ultimately leads to approximate analytical expressions for vibration response, and provides better insight into how the system parameters influence the vibration response. Finally, the effect of system parameters on the linear and nonlinear natural frequencies, vibration responses and frequency-response curves of the system is characterized.  相似文献   

8.
The early phases of propagation of a large amplitude electromagnetic disturbance in a nonlinear dielectric slab embedded between two linear media are investigated by the method of characteristics. This disturbance is triggered by the arrival of an electromagnetic shock wave at one of the interfaces. Reflection and transmission of an arbitrary signal when it arrives at one of the slab boundaries is characterized in terms of nonlinear reflection and transmission coefficients for the interface. No restrictions are placed on the form of the constitutive laws of the material comprising the slab. By introducing, for the nonlinear dielectric, a class of model equations, an exact solution to the characteristic equations which describes the interaction of a centered wave with anarbitrary oncoming signal is obtained. Solutions for the electromagnetic fields are derived for the special case in which the incident disturbance interacts with the reflected signal from the slab interface. A particular case of the disturbance propagating across a nonmagnetic slab is also examined.  相似文献   

9.
In this paper we consider a structural acoustic model which takes account of thermal effects over and above displacement, rotational inertia and shear effects in the flat flexible structural component of the model. Thus the structural medium is a Reissner-Mindlin plate into which an additional degree of freedom, viz. temperature variation in the plate, has been introduced and the constitutive equations for the structural acoustic model couple parabolic dynamics with hyperbolic dynamics. We show unique solvability of the mathematical model and investigate the effect of the presence of thermal effects on the mechanical dissipation devices needed to attain uniform stabilization of the two-dimensional model in which the structural component is a Timoshenko beam. It turns out that, as in linear structural acoustic models which use the Euler-Bernoulli equation or the Kirchoff equation to describe the deflections of the thermo-elastic structural medium, uniform stabilization of the energy associated with the model can be attained without introducing mechanical dissipation at the free edge of the beam. Open problems with regard to the stabilization of the three-dimensional model are outlined.  相似文献   

10.
This paper presents a method for determining the nonlinear dynamic responses of structures under moving loads. The load is considered as a four degrees-of-freedom system with linear suspensions and tires flexibility, and the structure is modeled as an Euler–Bernoulli beam with simply supported at both ends. The nonlinear dynamic interaction of the load–structure system is discussed, and Kelvin−Voigt material model is employed for the beam. The nonlinear partial differential equations of the dynamic interaction are derived by using the von Kármán nonlinear theory and D'Alembert's principle. Based on the Galerkin method, the partial differential equations of the system are transformed into nonlinear ordinary equations, which can be solved by using the Newmark method and Newton−Raphson iteration method. To validate the approach proposed in this paper, the comparison are performed using a moving mass and a moving oscillator as the excitation sources, and the investigations demonstrate good reliability.  相似文献   

11.
We present an approach and numerical results for a new formulation modeling immiscible compressible two-phase flow in heterogeneous porous media with discontinuous capillary pressures. The main feature of this model is the introduction of a new global pressure, and it is fully equivalent to the original equations. The resulting equations are written in a fractional flow formulation and lead to a coupled degenerate system which consists of a nonlinear parabolic (the global pressure) equation and a nonlinear diffusion–convection one (the saturation equation) with nonlinear transmission conditions at the interfaces that separate different media. The resulting system is discretized using a vertex-centred finite volume method combined with pressure and flux interface conditions for the treatment of heterogeneities. An implicit Euler approach is used for time discretization. A Godunov-type method is used to treat the convection terms, and the diffusion terms are discretized by piecewise linear conforming finite elements. We present numerical simulations for three one-dimensional benchmark tests to demonstrate the ability of the method to approximate solutions of water–gas equations efficiently and accurately in nuclear underground waste disposal situations.  相似文献   

12.
In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.  相似文献   

13.
The present paper introduces a new interfacial marker-level set method (IMLS) which is coupled with the Reynolds averaged Navier–Stokes (RANS) equations to predict the turbulence-induced interfacial instability of two-phase flow with moving interface. The governing RANS equations for time-dependent, axisymmetric and incompressible two-phase flow are described in both phases and solved separately using the control volume approach on structured cell-centered collocated grids. The transition from one phase to another is performed through a consistent balance of kinematic and dynamic conditions on the interface separating the two phases. The topological changes of the interface are predicted by applying the level set approach. By fitting a number of interfacial markers on the intersection points of the computational grids with the interface, the interfacial stresses and consequently, the interfacial driving forces are easily estimated. Moreover, the normal interface velocity, calculated at the interfacial markers positions, can be extended to the higher dimensional level set function and used for the interface advection process. The performance of linear and non-linear two-equation kε turbulence models is investigated in the context of the considered two-phase flow impinging problem, where a turbulent gas jet impinging on a free liquid surface. The numerical results obtained are evaluated through the comparison with the available experimental and analytical data. The nonlinear turbulence model showed superiority in predicting the interface deformation resulting from turbulent normal stresses. However, both linear and nonlinear turbulence models showed a similar behavior in predicting the interface deformation due to turbulent tangential stresses. In general, the developed IMLS numerical method showed a remarkable capability in predicting the dynamics of the considered two-phase immiscible flow problems and therefore it can be applied to quite a number of interface stability problems.  相似文献   

14.
A model for immiscible compressible two-phase flow in heterogeneous porous media is considered. Such models appear in gas migration through engineered and geological barriers for a deep repository for radioactive waste. The main feature of this model is the introduction of a new global pressure and it is fully equivalent to the original equations. The resulting equations are written in a fractional flow formulation and lead to a coupled degenerate system which consists of a nonlinear parabolic (the global pressure) equation and a nonlinear diffusion–convection one (the saturation) equation with rapidly oscillating porosity function and absolute permeability tensor. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Under some realistic assumptions on the data, we obtain a nonlinear homogenized problem with effective coefficients which are computed via a cell problem and give a rigorous mathematical derivation of the upscaled model by means of two-scale convergence.  相似文献   

15.
In this paper we consider a linear three-dimensional structural acoustic model which takes account of displacement, rotational inertia and shear effects in the flat flexible structural component of the model. Thus the deflections of the structural component of the structure are governed by the Reissner–Mindlin plate equations. We show strong stabilization of the coupled model without incorporating viscous or boundary damping in the equations for the gas dynamics and without imposing geometric conditions. It turns out that damping is needed in the interior of the plate, to which end Kelvin–Voigt damping is introduced in the plate equations. As our main tool we use a resolvent criterion for strong stability due to Tomilov.  相似文献   

16.
Oscillation of a gas in closed resonators has gained considerable interest in the past years. In this paper, the nonlinear equations governing the behavior of the gas oscillations inside the resonator are formulated in a weak form and then modeled using the finite element method. The pressure ratios, predicted by the proposed model, are in close agreement with the exact solutions available for simple geometries such as cylindrical, exponential and linearly varying area resonators. The presented comparisons validate the accuracy of the finite element model and emphasize its potential for predicting the performance or resonators of more complex geometries which are necessary for generating high pressures from the standing waves. Also, gas flow through the boundaries of the resonator is implemented in the proposed model. The presented finite element model presents an invaluable tool for designing a new class of acoustic compressors which can be used, for example, in refrigeration and vibration control applications.  相似文献   

17.
Thermal self-action of acoustic beam in a molecular gas with excited internal degrees of molecules’ freedom, is studied. This kind of thermal self-action differs from that in a Newtonian fluid. Heating or cooling of a medium takes place due to transfer of internal vibrational energy. Equilibrium and non-equilibrium gases, which may be acoustically active, are considered. A beam in an acoustically active gas is self-focusing unlike a beam in a standard viscous gas. The self-action effects relating to wave beams containing shock fronts, are discussed. Stationary and non-stationary kinds of self-action are considered.  相似文献   

18.
A model for the thermomechanical behaviour of a beam which allows for the general evolution of material damage is presented and investigated. One end of the beam is fixed while the other is constrained to move between two stops. The contact of the free tip with the stops is modelled by the normal compliance condition. The thermal interaction between the stops and the free tip is described by a heat exchange condition where the heat transfer coefficient is a general function of the gaps between the tip and the stops. The effects on the mechanical properties of the material due to crack expansion are described by a damage field, which measures the decrease in the load-bearing capacity of the material. The damage evolves as a constrained diffusion process in which the microcracks that develop may grow or disappear. The mathematical model consists of a coupled system of energy--elasticity equations together with a nonlinear parabolic inclusion for the damage field. The existence of a local solution is established using truncation, penalization, and a priori estimates.  相似文献   

19.
In this paper we discuss an approach to the modeling of acoustic systems that combines prior information, exploited through physical modeling, and nonlinear dynamics reconstruction, exploited through support vector machine regression. We demonstrate our approach on two case studies, both addressing the broad class of acoustic systems for which the sound generation is obtained through the interaction of a linear system (resonator) and a nonlinear system (excitation). The first case is a physically based impact model, where the resonator is described in terms of its normal modes and the nonlinear contact force is modeled through a simplified collision equation and kernel regression. In the second case study, a model of the voice phonation is illustrated in which the vocal folds are represented by a lumped linear mass-spring system and the nonlinear flow component is modeled through simple Bernoulli-based equations and kernel regression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号