首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Semi-IPNs were constructed by forming the crosslinking networks via the reaction between BPPO and diamine cross-linkers to overcome the dimensional swelling and methanol-permeation issues of SPEEK.  相似文献   

2.
Sulfonated poly(ether ether ketone) (PEEK) was prepared by sulfonation of commercial Victrex@ PEEK and degree of sulfonation was found to be about 44.5% by 1H NMR. Sulfonated PEEK/polyaniline composite membranes, in order to prevent methanol crossover, were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face modification. FTIR and PANI coating density studies confirmed the loading of PANI in sulfonated PEEK membrane matrix. PANI composite membranes with different polymerization time were prepared and subjected to thermogravimetric analysis as well as electrochemical and methanol permeability study to compare with sulfonated PEEK and Nafion 117 membrane. Ion-exchange capacity, water uptake, proton transport numbers and proton conductivities for different PANI composite sulfonated PEEK (SPEEK) membranes were found to be dependent on the coating density of the PANI in the membrane matrix and were slightly lower than that of Nafion 117 membrane. Methanol permeability of these membranes (especially SPEEK/PANI-1.5) was about four times lower than Nafion 117 membrane. Among the all SPEEK membranes synthesized in this study, SPEEK-1.5 appears to be more suitable for direct methanol fuel cell (DMFC) application considering optimum physicochemical and electrochemical properties, thermal stability as well as very low methanol permeability. Above all, the cost-effective and simple fabrication technique involved in the synthesis of such composite membranes makes their applicability quite attractive.  相似文献   

3.
Direct methanol fuel cells (DMFC) are attractive for portable and automobile power needs, but their commercialization is hampered by high methanol permeability and the high cost of the currently used Nafion membrane. We report here a novel, low-cost blend membrane consisting of polysulfone-2-amide-benzimidazole (a basic polymer) and sulfonated poly(ether ether ketone) (an acidic polymer), which facilitates proton conduction through acid–base interactions while preserving excellent chemical and mechanical stabilities. The blend membrane exhibits performance in DMFC much higher than that of Nafion 115 and similar to that of Nafion 112, but with a remarkably superior long-term performance than Nafion 112 due to significantly reduced methanol crossover, enhancing the commercialization prospects of DMFC.  相似文献   

4.
Modification of sulfonated poly(ether ether ketone) (SPEEK) membrane was attempted by blending charged surface modifying macromolecule (cSMM). The modified membrane was tested for direct methanol fuel cell (DMFC) application; i.e. a SPEEK/cSMM blend membrane was compared to a SPEEK membrane and a Nafion 112 membrane for the thermal and mechanical stability, methanol permeability, and proton conductivity. Thermal and mechanical stability of the blended membrane were slightly reduced from the SPEEK membrane but still higher than the Nafion 112 membrane. The blend membrane was found to be promising for DMFC applications because of its lower methanol diffusivity (2.75 × 10−7 cm2 s−1) and higher proton conductivity (6.4 × 10−3 S cm−1), than the SPEEK membrane. A plausible explanation was given for the favorable effect of cSMM blending.  相似文献   

5.
直接甲醇燃料电池中的膜性能比较   总被引:2,自引:0,他引:2  
邓会宁  李磊  许莉  王宇新 《物理化学学报》2004,20(11):1372-1375
制备了磺化聚醚醚酮(SPEEK)和磺化酚酞型聚醚砜(SPES-C)两种质子交换膜,考察了其质子导电和阻醇性能.实验发现,两种新型质子交换膜具有一定的化学稳定性和质子电导率,尤其在高温下两种新膜的质子电导率与Nafion膜接近.两种新膜的甲醇透过系数要比Nafion膜的低1~2个数量级.分别以两种新型膜和Nafion115膜为电解质制备了直接甲醇燃料电池膜电极,讨论了膜材料的性能对直接甲醇燃料电池性能的影响.结果表明,膜材料的阻醇性越好,电池的开路电压越高;膜的电导率越高,在较高电流密度区域内电池的性能越好.  相似文献   

6.
通过在磺化聚醚醚酮(SPEEK,DS=61.68%)中分别混入酚酞型聚醚砜(PES-C)、磺化酚酞型聚醚砜(SPES-C,DS=53.7%)制备出SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜.结果表明,共混的两种聚合物之间均具有较好的相容性.PES-C、SPES-C的混入能有效降低膜的溶胀及甲醇透过,且随着共混量的增加,这种作用越趋明显.纯SPEEK膜在75℃左右溶解,而SPEEK/PES-C(30wt%)、SPEEK/SPES-C(30wt%)共混膜在80℃时溶胀度仅为22.5%、26.32%.在室温至80℃范围内,纯SPEEK及共混膜的甲醇透过系数都在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,温度大于90℃时,SPEEK/PES-C(20wt%)共混膜电导率超过Nafion115膜;温度大于110℃时,SPEEK/SPES-C(30wt%)共混膜电导率与Nafion115膜相当,达到0.11S.cm-1.高电导率,低透醇系数以及明显提高了的可使用温度表明该类共混膜有望在DMFC中使用.  相似文献   

7.
In direct methanol fuel cells (DMFC), methanol crossover is a major issue which has reduced the performance of polymer electrolyte membrane (PEM) for energy generation. In this study, graphene oxide (GO) and conductive polyaniline decorated GO (PANI-GO) were used as additives in fabrication of sulfonated poly(ether ether ketone) (SPEEK) nanocomposite PEM membrane to reduce methanol crossover. PANI-GO was synthesized by in situ polymerization method and the formation of PANI coated GO nanostructures was confirmed by surface morphology and crystallinity analysis. The membrane morphology and topography analysis confirmed that GO and PANI-GO were well dispersed on the surface of SPEEK membrane. 0.1 wt% PANI-GO modified SPEEK nanocomposite membrane exhibited the highest water uptake and ion exchange capacity of 40% and 1.74 meq g?1, respectively. The oxidative stability of the nanocomposite membranes also improved. Lower methanol permeability of 4.33 × 10?7 cm?2S?1 was noticed for 0.1 wt% PANI-GO modified SPEEK membrane. PANI-GO modified SPEEK membrane enhanced the proton conductivity, which was due to the existence of acidic and hydrophilic group present in PANI and GO. PANI-GO modified SPEEK membrane held higher selectivity of 1.94 × 104 S cm?3 s?1. Overall, these studies revealed that PANI-GO modified SPEEK membrane is a potential material for DMFC applications.  相似文献   

8.
本文报道了采用浓硫酸作为磺化剂,成功合成了不同磺化度下的聚醚醚酮(PEEK)膜,并深入研究了磺化条件包括磺化时间和磺化剂的用量对所获薄膜性能的影响,获得了在不同磺化度(DS)下SPPEK膜的离子交换容,含水率,机械性能,质子电导率等参数,特别测定了在全钒液流电池工作条件下钒离子(Ⅳ)渗透率,首次为该类液流储能电池使用价廉质优的质子交换膜提供了基础实验数据。室温条件下的实验结果如下:1)磺化12小时后,膜的磺化度46%,含水量为28%,钒离子(Ⅳ)选择性最佳(钒离子渗透率为1.2×10-7 cm2/min-1,是Nafion117 (2.9×10-6 cm2/min-1)的1/24),其质子电导率只有0.02 S/cm;2)磺化96小时其磺化度达79%的膜,质子电导率达0.16 S/cm,是Nafion117 (0.10S/cm) 的1.6倍, 但其机械性能最差;3)与Nafion117膜相比,磺化在36到48小时的SPPEK膜其机械力学性能好,薄膜的钒离子渗透率、离子交换容IEC、质子导电率和含水率高,且对钒离子的选择性佳,尤其价格仅为Nafion膜的1/13,是理想的Nafion膜的代替物,可望直接应用于全钒氧化还原液流(VRB)电池中。本文还讨论了磺化时间和不同磺化剂量对膜的性质的影响。  相似文献   

9.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

10.
A new series of aromatic poly(arylene ether ether ketone ketone) copolymers containing pendant sulfonic acid groups (SPAEEKK‐D) were synthesized from commercially available monomers 1,3‐bis(4‐fluorobenzoyl)‐benzene, sodium 6,7‐dihydroxy‐2‐naphthalenesulfonate, and 4‐(4‐hydroxyphenyl)‐2,3‐phthalazin‐1‐one (DHPZ). Structure–property relationships of the phthalazinone SPAEEKK‐D series poly(arylene ether ether ketone ketone) copolymer were compared with copolymers SPAEEKK‐B and SPAEEKK‐H containing different diols such as 4,4′‐biphenol and hydroquinone, respectively, prepared in our earlier work. Ion exchange capacity (IECw, weight‐based; IECv, volume‐based), thermal stabilities, swelling, proton and methanol transport properties of the membranes were investigated in relation to their structures and compared with those of perfluorinated ionomer (Nafion 117). The SPAEEKK‐D membrane incorporating the phthalazinone monomer DHPZ showed relatively lower water uptake and methanol permeability compared with earlier SPAEEKK‐B and SPAEEKK‐H membranes incorporating biphenol and hydroquinone monomers, respectively. Inclusion of phthalazinone in the SPAEEKK‐D copolymers led to lower water absorption, enabling increased proton exchange concentrations in the hydrated polymer matrix that resulted in more desirable membrane properties for future direct methanol fuel cell applications. The SPAEEKK‐D membranes also showed improved mechanical and thermal properties and oxidative stability compared with the earlier SPAEEKK‐B and ‐H membranes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 989–1002, 2008  相似文献   

11.
Polymer blends of sulfonated poly(ether ether ketone) (SPEEK) and poly(ether sulfone) (PES) in N-methyl-2-pyrrolidinone (NMP) were prepared by solution casting. The investigation on water uptake, methanol uptake, permeability and proton conductivity has been conducted. The spin-lattice relaxation time in the rotating frame of PES/SPEEK blend was obtained from the results of cross-polarization magic angle spinning (CP/MAS) solid state 13C NMR. SPEEK blended with PES resulted in increasing , indicating the molecular motion of polymer chain was reduced. The glass transition temperature of the PES/SPEEK blend membranes were predicted by the Kwei equation. PES plays an important role in the decreasing water uptake, methanol uptake and methanol permeability while enhancing the thermal stability of the blend membrane, which shows the feasibility for direct methanol fuel cell.  相似文献   

12.
A nanocomposite membrane of sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) is proposed for direct methanol fuel cells (DMFCs). The SMMT is clay modified with silane of which the structure consists of a sulfonic acid group for proton conductivity improvement. The micro- and nano-scaled morphologies of the membranes perform the increase in inorganic aggregation with SMMT loading content as confirmed by SEM and AFM. The membrane stability, i.e., the liquid uptake in water and in methanol aqueous solution, as well as the mechanical stability increases with the SMMT loading content whereas thermal stability does not improve significantly. The methanol permeability reduction is obtained when the SMMT loading content increases for various methanol concentrations (1.5–4.5 M). A comparative study of the SPEEK nanocomposite membranes with SMMT and with pristine MMT shows fourfold proton conductivity enhancement after sulfonation. The DMFC single cell tests inform us that all nanocomposite membranes give the significant performance revealed by the plot of current density–voltage and power density.  相似文献   

13.
Partially disulfonated hydroquinone (HQ)‐based poly(arylene ether sulfone) random copolymers were synthesized and characterized for application as proton exchange membranes. The copolymer composition was varied in the degree of disulfonation. The copolymers were characterized by 1H NMR, Differential Scanning Calorimetry (DSC), and other analytical techniques. The copolymer with a 25% degree of disulfonation showed the best balance between water uptake and proton conductivity. The copolymers showed substantially reduced methanol permeability compared with Nafion® and satisfactory direct methanol fuel cell performance. The methanol selectivity improved significantly in comparison to Nafion® 117. At a given ionic composition, the HQ‐based system showed higher water uptake and proton conductivity than the biphenol‐based (BPSH‐xx) poly(arylene ether sulfone)s copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 384–391, 2009  相似文献   

14.
DMFC用PES/SPEEK共混阻醇质子交换膜   总被引:1,自引:0,他引:1  
将磺化聚醚醚酮(SPEEK, 磺化度DS为68.3%)和聚醚砜(PES)两种聚合物共混制得PES/SPEEK共混膜. DSC研究表明两种聚合物之间具有较好的相容性, 因而共混膜均匀致密, 未发生大尺度相分离. PES的混入能有效降低膜的溶胀度及甲醇透过系数. 纯SPEEK 膜40 ℃时在1 mol•L−1甲醇水溶液中溶胀度达到160%, 45 ℃时就完全溶解, 而含30%(w)PES的共混膜在80 ℃时的溶胀度仅有15%. 室温下含20%−30%(w)PES的共混膜的甲醇透过系数为1×10−7 cm2•s−1左右, 比Nafion 115膜的透过系数小一个数量级. 尽管80 ℃下30%(w)PES/SPEEK共混膜的电导率与Nafion 115膜相当, 但由于共混膜的厚度比Nafion 115膜小1/3左右, 膜电阻较小, 因而其电池性能比Nafion 115膜的好.  相似文献   

15.
磺化聚醚醚酮膜的制备及其阻醇和质子导电性能   总被引:17,自引:0,他引:17  
直接甲醇燃料电池 (Directmethanolfuelcell,DMFC)以高效、清洁和燃料储运方便等优点适宜于作为各种用途的可移动动力源 ,成为 2 0世纪 90年代以来研究与开发的热点[1,2 ] .目前 ,这种电池的研究难点主要集中在催化剂不稳定和质子交换膜透醇上 .一张好的DMFC膜不但要可传递质子、绝缘电子 ,还应具有良好的阻醇性能 .如果膜的阻醇性能不好 ,甲醇会穿过膜到达阴极 ,与氧直接反应而不产生电流 ,不但造成燃料的浪费 ,同时也影响阴极的正常反应 ,使电池效率下降[3] .目前广泛应用于燃料电池中的Nafion系列膜…  相似文献   

16.
Partially sulfonated poly(etheretherketone) (SPEEK) samples were prepared by modification of corresponding poly(etheretherketone) (PEEK) with concentrated sulfuric acid. Membranes cast from these materials were evaluated as polymer electrolytes for direct methanol fuel cells (DMFCs). SPEEK membranes were characterized by 1H NMR, FT-IR and TGA. The transverse proton conductivities increased from 4.1 to 9.3 × 10−3 S/cm with the increase of the degree of sulfonation (DS) from 0.59 to 0.93. These values were comparable with that of Nafion 117 membrane (1.0 × 10−2 S/cm) measured under the same condition. Nearly one order magnitude difference between transverse conductivity and longitudinal conductivity was found. The methanol permeabilities of the SPEEK membranes were all lower than that of Nafion 117 membrane. The effects of temperature and methanol concentration on the methanol permeability were also studied. In addition, the selectivities of the SPEEK membranes for protons and methanol were all higher than that of Nafion 117 membrane.  相似文献   

17.
Novel acid–base blend membranes consisting of acidic sulfophenylated poly(ether ether ketone ketone) (Ph-SPEEKK) and various amounts of basic polysulfone tethered with 5-amino-benzotriazole (PSf-BTraz) have been prepared and characterized. The blend membranes show higher proton conductivity and lower liquid uptake and dimensional swelling compared to plain Ph-SPEEKK and sulfonated poly(ether ether ketone) (SPEEK) membranes. The Ph-SPEEKK/PSf-BTraz blend membranes with optimized basic polymer contents exhibit lower methanol crossover and higher performance with improved stability in direct methanol fuel cells (DMFC) at various methanol concentrations (1–10 M) than plain Ph-SPEEK and Nafion-115 membranes.  相似文献   

18.
Partially sulfonated poly(aryl ether sulfone) (PESS) was synthesized and methacrylated via reaction with glycidyl methacrylate (PESSGMA) and cross‐linked via radical polymerization with styrene and vinyl‐phosphonic acid (VPA). The chemical structures of the synthesized pre‐polymers were characterized via FTIR and 1H NMR spectroscopic methods and molecular weight was determined via GPC. Membranes of these polymers were prepared via solution casting method. The crosslinking of the PESS polymer reduced IEC, proton conductivity, swelling in water, and methanol permeability of the membranes while increasing the modulus and the glass transition temperature. However, the introduction of the VPA comonomer increased the proton conductivity while maintaining excellent resistance to methanol cross‐over, which was significantly higher as compared with both PESS and the commercial Nafion membranes. Membranes of PESSGMA copolymers incorporating VPA, exhibited proton conductivity values at 60 °C in the range of 16–32 mS cm−1 and methanol permeability values in the range of 6.52 × 10−9 – 1.92 × 10−8 cm2 s−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 558–575  相似文献   

19.
通过在磺化聚醚醚酮(SPEEK)中掺杂1,2,4-三羧基丁烷-2-膦酸锆(Zr(PBTC))制备出SPEEK/Zr(PBTC)复合质子交换膜.结果表明,与纯SPEEK膜相比,Zr(PBTC)的掺杂能降低复合膜的吸液量及甲醇透过系数,且随着Zr(PBTC)含量的增加,这种作用越趋明显.在室温至80℃范围内,复合膜的甲醇透过系数在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,当温度大于90℃时,含40wt%Zr(PBTC)的复合膜电导率超过Nafion115膜,并在160℃时达到0.36S.cm-1.使用温度的提高及在高温下的高电导率表明该复合膜适合在高温DMFC中使用.  相似文献   

20.
磷钨酸/磺化聚醚醚酮质子导电复合膜   总被引:14,自引:0,他引:14  
直接甲醇燃料电池(Direct methanol fuelcell,DMFC)作为各种用途的可移动动力源具有高效、清洁和燃料储运方便等优点,成为20世纪90年代以来研究与开发的热点。目前,这种电池的研究难点主要集中在催化剂不稳定和质子交换膜透醇上,DMFC膜不但要可传递质子和绝缘电子,还应具有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号