首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We developed thin films of blends of polystyrene (PS) with the thermoresponsive polymer poly(N‐isopropylacrylamide) (PNIPAM) (PS/PNIPAM) and its diblock copolymer polystyrene‐b‐poly(N‐isopropylacrylamide) (PS/PS‐b‐PNIPAM) in different blend ratios, and we study their surface morphology and thermoresponsive wetting behavior. The blends of PS/PNIPAM and PS/PS‐b‐PNIPAM are spin‐casted on flat silicon surfaces with various drying conditions. The surface morphology of the films depends on the blend ratio and the drying conditions. The PS/PS‐b‐PNIPAM films do not show an increase in their water contact angles with temperature, as it is expected by the presence of the PNIPAM block. All PS/PNIPAM films show an increase in the water contact angle above the lower critical solution temperature of PNIPAM, which depends on the ratio of PNIPAM in the blend and is insensitive to the drying conditions of the films. The difference between the wetting behavior of PS/PS‐b‐PNIPAM and PS/PNIPAM films is due to the arrangement of the PNIPAM chains in the film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 670–679  相似文献   

2.
We report the self‐consistent field theory (SCFT) of the morphology of lamella‐forming diblock copolymer thin films confined in two horizontal symmetrical/asymmetrical surfaces. The morphological dependences of thin films on the polymer‐surface interactions and confinement, such as film thickness and confinement spatial structure, have been systematically investigated. Mechanisms of the morphological transitions can be understood mainly through the polymer‐surface interactions and confinement entropy, in which the plat confinement surface provides a surface‐induced effect. The confinement is expressed in the form of the ratio D/L0, here D is film thickness, and L0 is the period of bulk lamellar‐structure. Much richer morphologies and multiple surface‐induced morphological transitions for the lamella‐forming diblock copolymer thin films are observed, which have not been reported before. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1–10, 2009  相似文献   

3.
The surface morphologies of poly(styrene‐b‐4vinylpyridine) (PS‐b‐P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (?PS) in the mixture. It was found that when hPS was added into symmetric PS‐b‐P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With ?PS increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in ?PS is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3496–3504, 2004  相似文献   

4.
Tetrakis‐5,10,15,20‐(4‐carboxyphenyl)porphyrine (TCPP) was position‐selectively introduced into a diblock copolymer film of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) with a sea–island microphase structure. By immersing the PS‐b‐P4VP film into a solution of TCPP/methanol, TCPP was introduced into the island parts comprising P4VP phase. The morphology of the island parts depended on the immersion time and TCPP concentration. A schematic model for the morphological change caused by the phase‐selective introduction of TCPP was proposed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 368–375, 2007  相似文献   

5.
The thin film phase behavior of ternary blends consisting of symmetric poly(styrene) (PS)-b-poly(dimethylsiloxane)(PDMS), PS, and PDMS was investigated using X-ray reflectivity (XRR) and atomic force microscopy (AFM). This system is strongly segregated, and the homopolymers are approximately the same length as the corresponding blocks of the copolymer. The XRR and AFM data are used to quantify changes in domain spacing (L) and morphology evolution with increasing homopolymer content (Φ H). In 100 nm thick films, from Φ H = 0 to 0.20, the system maintains a perfect parallel lamellar structure and domains swell as predicted based on theory; however, from Φ H = 0.30 to 0.50, a morphology transition to a “dot pattern” morphology (tentatively identified as perforated lamellae) and mixed morphologies were observed before macrophase separation. In thicker films, dot patterns were observed for a broad range of Φ H before macrophase separation. The absence of the bicontinuous microemulsion phase reported for bulk blends and thin films of perpendicular lamellae and the presence of dot patterns/perforated lamellae are attributed to preferential migration of the PDMS homopolymer to the wetting layers located at the substrate and free air interfaces, which leads to an asymmetric composition within the film and morphology transition. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1443–1451  相似文献   

6.
Summary: Binary symmetric diblock copolymer blends, that is, low‐molecular‐weight poly(styrene‐block‐methyl methacrylate) (PS‐b‐PMMA) and high‐molecular‐weight poly(styrene‐block‐methacrylate) (PS‐b‐PMA), self‐assemble on silicon substrates to form structures with highly ordered nanoholes in thin films. As a result of the chemically similar structure of the PMA and the PMMA block, the PMMA chain penetrates through the large PMA block that absorbs preferentially on the polar silicon substrate. This results in the formation of nanoholes in the PS continuous matrix.

An atomic force microscopy image of the thin film obtained from the blend of low‐molecular‐weight PS‐b‐PMMA and high‐molecular‐weight PS‐b‐PMA. The regular array of nanoholes in the films surface is clearly visible.  相似文献   


7.
A novel monomer, ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate, containing a photoisomerizable N?N group was synthesized. The monomer was further diblock copolymerized with methyl methacrylate. Amphiphilic diblock copolymer poly(methyl methacrylate‐block‐ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate ( PMMA ‐ b ‐ PAzoMA ) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes in micellar structure between sphere and rod‐like particles took place as a result of the reversible E‐Z photoisomerization of azobenzene segments in PMMA ‐ b ‐ PAzoMA . Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using atom force microscopy topology and scanning electron microscopy analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1142–1148, 2010  相似文献   

8.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   

9.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Using sequential RAFT polymerization, single monomer insertion, and “click” chemistry, a series of triblock copolymers, poly(ethylene oxide)‐b‐polystyrene‐b‐poly(ethylene oxide), PEO‐b‐PS‐b‐PEO, were synthesized, where one of the two junction points is a UV cleavable ortho‐nitrobenzyl (ONB). Ordered patterns of PEO‐b‐PS‐b‐PEO were produced by solvent vapor annealing. Upon exposure to ultraviolet (UV) light, the PEO‐b‐PS‐b‐PEO was converted into a mixture of a PEO homopolymer and a PS‐b‐PEO diblock copolymer. It was found that the microdomain spacing could be tuned by adjusting the UV exposure time, due to the change in the copolymer architecture and the swelling of the PEO microdomain by the PEO homopolymer produced. By selective area exposure of the PEO‐b‐PS‐b‐PEO thin films, the domain spacing was changed over selected locations across the film, generating patterns of different microdomain sizes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 355–361.  相似文献   

11.
Distinct stratified and non‐stratified morphologies were developed in poly(3‐hexylthiophene) (P3HT) and poly(ethylene glycol) (PEG)‐based homopolymer blends and diblock and triblock copolymer systems. By applying X‐ray photoelectron spectroscopy, only a double‐percolation mechanism including assembling of P3HT chains into the nanofibers in solution aging process with a marginal solvent like p‐xylene as well as crystallization of PEG phase in the cast thin films resulted in vertical stratification and networked fibrils. In cast thin films whose PEG phase, due to low molecular weight or being constrained between two rigid P3HT blocks in triblock copolymers was not crystallized, a non‐stratified discrete fibrillar morphology was acquired. Crystallization of PEGs in the thin films mainly participated in networking and expelling pre‐organized P3HT fibrils to the film surface. By performing the solution aging step in a good solvent such as o‐dichlorobenzene, the P3HTs remained in a coily‐like conformation, and casting the corresponding thin films reflected the non‐stratified discrete granular and featureless morphologies. Assembling the P3HT chains in the presence of PEG phase in cast films at most led to the low‐crystalline granules instead of highly crystalline nanofibrils. No significant crystallization in either homopolymer blends or block copolymer systems conduced to a featureless morphology with homogeneous distribution of existed materials. The surface morphology and ordering in various morphologies were studied employing atomic force microscopy, grazing incidence X‐ray diffraction, and ultraviolet–visible analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We demonstrate the use of combined thermal annealing and solvent vapor annealing (SVA) to tune the morphology of thermally responsive block copolymer (BCP) thin films. The BCP, poly(styrene‐btert‐butyl acrylate) (PS‐b‐PtBA), undergoes a chemical deprotection to poly(styrene‐b‐acrylic anhydride) (PS‐b‐PAH) above a temperature threshold, giving rise to a structural and morphological transition. Our experiments systematically examine different thermal annealing and SVA protocols with two solvents (tetrahydrofuran and acetone) and map the resulting morphologies. Assessments of these processing protocols were accelerated using temperature gradients. Our results demonstrate that the final nanoscale morphologies after SVA are determined by the changes in the relative solvent/polymer interactions and surface tensions of the polymer blocks that accompany deprotection. Because of these driving forces, certain processing combinations led to irreversible morphological states, whereas others present opportunities for further manipulation. Accordingly, our study reveals that the morphology of this thermally sensitive BCP can be altered through judicious choice of annealing protocol. The protocols that combine equal numbers of SVA and thermal annealing (TA) steps are not necessarily equivalent, and the order of the SVA relative to TA is a deciding factor in the final morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
A series of novel four‐arm A2B2 and A2BC and five‐arm A2B2C miktoarm star polymers, where A is poly(dimethylsiloxane) (PDMS), B is polystyrene (PS), and C is polyisoprene (PI), were successfully synthesized by the combination of chlorosilane and benzyl chloride linking chemistry. This new and general methodology is based on the linking reaction of in‐chain benzyl chloride functionalized poly(dimethylsiloxane) (icBnCl–PDMS) with the in‐chain diphenylalkyl (icD) living centers of PS‐DLi‐PS, PS‐DLi‐PI, or (PS)2‐DLi‐PI. icBnCl–PDMS was synthesized by the selective reaction of lithium PDMS enolate (PDMSOLi) with the chlorosilane groups of dichloro[2‐(chloromethylphenyl)ethyl]methylsilane, leaving the benzyl chloride group intact. The icD living polymers, characterized by the low basicity of DLi to avoid side reactions with PDMS, were prepared by the reaction of the corresponding living chains with the appropriate chloro/bromo derivatives of diphenylethylene, followed by a reaction with BuLi or the living polymer. The combined molecular characterization results of size exclusion chromatography, 1H NMR, and right‐angle laser light scattering revealed a high degree of structural and compositional homogeneity in all miktoarm stars prepared. The power of this general approach was demonstrated by the synthesis of a morphologically interesting complex miktoarm star polymer composed of two triblock terpolymer (PS‐b‐PI‐b‐PDMS) and two diblock copolymer (PS‐b‐PI) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6587–6599, 2006  相似文献   

14.
The synthesis of a diblock copolymer of styrene and vinyl acetate (VAC), PS‐b‐PVAC, was performed by successive photoinduced charge‐transfer polymerization (CTP) under UV irradiation. A novel amphiphilic diblock copolymer of PS‐b‐PVA then was obtained by the hydrolysis of the diblock copolymer PS‐b‐PVAC with sodium ethoxide as a catalyst. Both of them were characterized by Fourier transform infrared, H NMR, and gel permeation chromatography in detail. The effect of the solvents on the CTP and the kinetics of the CTP are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 914–920, 2000  相似文献   

15.
We present herein a mild and rapid method to create diblock copolymer brushes on a silicon surface via photoinitiated “thiol‐ene” click reaction. The silicon surface was modified with 3‐mercaptopropyltrimethoxysilane (MPTMS) self‐assembled monolayer. Then, a mixture of divinyl‐terminated polydimethylsiloxane (PDMS) and photoinitiator was spin‐coated on the MPTMS surface and exposed to UV‐light. Thereafter, a mixture of thiol‐terminated polyethylene glycol (PEG) and photoinitiator were spin‐coated on the vinyl‐terminated PDMS‐treated surface, and the sequent photopolymerization was carried out under UV‐irradiation. The MPTMS, PDMS, and PEG layers were carefully identified by X‐ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and water contact angle measurements. The thickness of the polydimethylsiloxane‐block‐poly(ethylene glycol) (PDMS‐b‐PEG) diblock copolymer brush could be controlled by the irradiation time. The responsive behavior of diblock copolymer brushes treated in different solvents was also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
True model linear poly(styrene‐b‐dimethylsiloxane) PS‐b‐PDMS copolymers were synthesized by using sequential addition of monomers and anionic polymerization (high‐vacuum techniques), employing the most recent experimental procedures that allow the controlled polymerization of each monomer to obtain blocks with controlled molar masses. The model diblock copolymers obtained were analyzed by using different techniques, such as size‐exclusion chromatography, 1H NMR, Fourier transform infrared spectroscopy, small angle X‐rays scattering (SAXS), and wide angle X‐rays scattering (WAXS). The PS‐b‐PDMS copolymers obtained showed narrow molar mass distribution and variable PDMS content, ranging from 2 up to 55 wt %. Compacted powder samples were investigated by SAXS to reveal their structure and morphology changes on thermal treatment in the interval from 30 to 200 °C. The sample with the highest PDMS content exhibits a lamellar morphology, whereas two other samples show hexagonally packed cylinders of PDMS in a PS matrix. For the lowest PDMS content samples, the SAXS pattern corresponds to a disordered morphology and did not show any changes on thermal treatment. Detailed information about the morphology of scattering domains was obtained by fitting the SAXS scattering curves. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3119–3127, 2010  相似文献   

17.
采用原子力显微镜(AFM)和透射电镜(TEM)研究了聚苯乙烯/聚二甲基硅氧烷嵌段共聚物(PS-b-PDMS)薄膜的相形态.结果表明,当采用甲苯作为溶剂,旋转涂膜的薄膜样品呈现网络状的形态分布在表面,而样品所对应的透射电镜照片中,PDMS相作为球状分布在PS的连续相中.退火温度对共聚物表面形态有一定的影响,当退火温度高于PDMS的玻璃化温度,表面中PDMS相增多.PS-b-PDMS嵌段共聚物的表面形态随着所用溶剂的变化而有所不同,当采用甲苯作为溶剂时,样品的PS相形成凹坑分布在PDMS的相区之中,而采用环己烷作为溶剂时,PS相作为突起分布在PDMS相区之中.另外,基底对共聚物薄膜表面形态的有较大的影响,当采用硅晶片作为基底时,样品中的PDMS相和PS相呈现近似平行于表面的层状结构.  相似文献   

18.
The surface modification of polystyrene (PS) by the blending of 4‐acetoxystyrene polymers and their corresponding hydrolysis products, 4‐hydroxystyrene polymers, was investigated on the basis of X‐ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact‐angle measurements. According to XPS and AFM measurements, when polystyrene‐block‐poly(4‐acetoxystyrene) (PS‐b‐PAS) or polystyrene‐block‐poly(4‐hydroxystyrene) (PS‐b‐PHS) was incorporated into PS, the block copolymer was preferentially segregated at the highest surface region of the blend. This segregation increased to a plateau value when more than 5 wt % of either PS‐b‐PHS or PS‐b‐PAS was added. The contact angle of the modified PS by PS‐b‐PAS or PS‐b‐PHS was slightly lower than that of homopolystyrene, but no further decrease was observed with the blend ratio of the diblock copolymer increasing from 5 to 20 wt %. For a PS/PS‐b‐PHS blend, the surface atomic concentration ratio O/C increased linearly with the molecular weight of poly(4‐hydroxystyrene) blocks in diblock copolymer PS‐b‐PHS in the range of our study. The different structures of 4‐acetoxystyrene polymers and their hydrazinolyzed materials may affect the surface compositions of their blends with PS; among these polymers, PS‐b‐PHS and PS‐b‐PAS appeared to be most effective. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1046–1054, 2001  相似文献   

19.
Summary: We follow the time development of the microdomain structure in symmetric polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) diblock copolymer thin films during acetone vapor treatment. Besides the highly ordered nanoscopic spheres or stripes as reported previously, a novel so‐called flower‐like pattern, which comprises six PS spheres and each PS sphere belongs to three “flowers” is formed. This finding is very helpful to discuss the highly ordered nanoscopic sphere formation process.

Transition from flower‐like structure to well‐ordered arrays of spheres, in which the flower‐like pattern, the transitional morphology, and the ordered spheres are in the portion A, B, and C, respectively.  相似文献   


20.
The nanostructures of thin films spin‐coated from binary blends of compositionally symmetric polystyrene‐b‐polybutadiene (PS‐b‐PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing‐incidence small‐angle X‐ray scattering (GISAXS) after spin‐coating and after subsequent solvent vapor annealing (SVA). In thin films of the pure diblock copolymers having high or low molar mass, the lamellae are perpendicular or parallel to the substrate, respectively. The as‐prepared binary blend thin films feature mainly perpendicular lamellae in a one‐phase state, indicating that the higher molar mass diblock copolymer dominates the lamellar orientation. The lamellar thickness decreases linearly with increasing volume fraction of the low molar mass diblock copolymer. After SVA, well‐defined macrophase‐separated nanostructures appear, which feature parallel lamellae near the film surface and perpendicular ones in the bulk.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号