首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interesting scientific and technological applications motivate the study of scattering problems, where a layered scatterer is excited by a spherical acoustic wave generated by a point-source located in its interior. The scatterer's core may be acoustically soft, hard, resistive, or penetrable. This paper initiates the investigation of scattering theorems, corresponding to the excitation of a layered scatterer by a point source in its interior. Reciprocity and general scattering theorems are established, relating the total fields and the corresponding far-field patterns. The optical theorem, relating the scattering cross-section with the field in the layer containing the source, is recovered as a corollary of the general scattering theorem. Furthermore, for a scatterer excited by a spherical and a plane wave, mixed scattering theorems are derived. Numerical implementations of the optical theorem in concrete scattering applications are analyzed.  相似文献   

2.
The problem of scattering of elastic spherical waves by a rigid body, cavity or a penetrable obstacle in 3D linear elasticity is considered. For two point sources, dyadic far-field pattern generators are defined, which are used for the formulation of a general scattering theorem. The main reciprocity principle and mixed scattering relations are also established. We provide the necessary energy considerations, presenting relative energy functionals and expressions for the differential and the scattering cross section due to point-source dyadic incidence. Finally, an application of the general scattering theorem for appropriate locations of the point source leads to an optical theorem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A layered scatterer is excited by a time‐harmonic spherical electromagnetic wave, generated by a dipole located either in the interior or in the exterior of the scatterer. The scatterer's core may be perfect conducting, impedance or dielectric. This paper initiates the investigation of scattering theorems corresponding to the excitation of a layered scatterer by a dipole in its interior. We establish reciprocity and general scattering theorems relating the total electric fields with the corresponding far‐field patterns. The optical theorem, relating the scattering cross‐section with the electric field in the layer containing the dipole, is recovered as a corollary of the general scattering theorem. Furthermore, for a scatterer excited by a spherical and a plane wave, mixed scattering theorems are derived. Besides, all the derived theorems recover known results, concerning the excitation of a homogeneous scatterer by an exterior dipole. We also analyze numerical implementations of the optical theorem in certain concrete scattering applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A spherical electromagnetic wave is scattered by a layered sphere.The exact expressions of the scattered and interior fields areobtained by solving the corresponding boundary-value problem,by means of a combination of Sommerfeld's and T-matrix methods.A recursive algorithm with respect to the number of layers isextracted for the computation of the fields in every layer.The far-field pattern and the scattering cross-sections aredetermined in terms of the physical and geometrical characteristicsof the scatterer. As the point-source tends to infinity, theknown results for plane wave incidence are recovered. Numericalresults are presented for several cases and various parametersof the layered spherical scatterer.  相似文献   

5.
A spherical acoustic wave is scattered by a bounded obstacle.A generalization of the ‘optical theorem’ (whichrelates the scattering cross-section to the far-field patternin the forward direction for an incident plane wave) is proved.For a spherical scatterer, low-frequency results are obtainedby approximating the known exact solution (separation of variables).In particular, a closed-form approximation for the scatteredwavefield at the source of the incident spherical wave is obtained.This leads to the explicit solution of some simple near-fieldinverse problems, where both the source and coincident receiverare located at several points in the vicinity of a small sphere.  相似文献   

6.
Based on integral transforms for wave fields, we obtain a generalization of the optical theorem for the case in which a local inhomogeneity is excited by a multipole source of arbitrary order. This generalization permits determining the total scattered and absorbed energy analytically by computing the derivatives of the scattered field at a single point. This relation can be used to compute the absorption cross-section in problems related to plasmonic structures and also to test computer modules when multipole radiation is scattered by transparent bodies.  相似文献   

7.
A time-harmonic plane electromagnetic wave is scattered by a chiral body in a chiral environment. The body is either a perfect conductor, or a dielectric, or a scatterer with an impedance surface. Using the Huygens's principle, we construct in closed forms both the left-circularly polarized and right-circularly polarized electric far field patterns for such chiral media. We prove reciprocity relations and general scattering theorems for chiral materials which are a generalization of those obtained by Twersky for achiral electromagnetic scattering. In the special case when the directions of incidence and observation are the same we prove the associated forward scattering theorems.  相似文献   

8.
It is proved that an inhomogeneous medium whose boundary contains a weakly singular point of arbitrary order scatters every incoming wave. Similarly, a compactly supported source term with weakly singular points on the boundary always radiates acoustic waves. These results imply the absence of non-scattering energies and non-radiating sources in a domain whose boundary is piecewise analytic but not infinitely smooth. Local uniqueness results with a single far-field pattern are obtained for inverse source and inverse medium scattering problems. Our arguments provide a rather weak condition on scattering interfaces and refractive index functions to guarantee the scattering phenomena that the scattered fields cannot vanish identically.  相似文献   

9.
A theory of the scattering of electromagnetic waves by homogeneous spheres, the so-called Mie theory, is presented in a unique and coherent manner in this paper. We begin with Maxwell's equations, from which the vector wave equations are derived and solved by means of the two orthogonal solutions to the scalar wave equation. The transverse incident electric field is mapped in spherical coordinates and expanded in known mathematical functions satisfying the scalar wave equation. Determination of the unknown coefficients in the scattered and internal fields is achieved by matching the electromagnetic boundary conditions on the surface of a sphere. Far-field solutions for the electric field are then given in terms of the scattering functions. Transformation of the electric field to the reference plane containing incident and scattered waves is carried out. Extinction parameters and the phase matrix are derived from the electric field perpendicular and parallel to the reference plane. On the basis of the independent-scattering assumption, the theory is extended to cases involving a sample of homogeneous spheres.  相似文献   

10.
The scattering problem of a plane or a point source generated wave is considered for the case where both the medium of propagation and the interior of the scatterer exhibit their own anisotropies. A particular redirected gradient operator is introduced, which carries all directional characteristics of the anisotropic medium. Once the fundamental solution is obtained, integral representations for the scattered as well as for the interior and the total fields are generated. For such media even the handling of the singularities, in generating integral representations, depends on the characteristics of the particular medium. A modified, also medium dependent, radiation condition is introduced. Detailed asymptotic analysis leads to an integral representation for the scattering amplitude. The associated energy functionals are presented and the relative cross sections are also defined. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Time‐harmonic electromagnetic waves are scattered by a homogeneous chiral obstacle. The reciprocity principle, the basic scattering theorem and an optical theorem are proved. These results are used to prove that if the chirality measure of the obstacle is real, then the far‐field operator is normal. Moreover, it is shown that the eigenvalues of the far‐field operator are the same as the eigenvalues of Waterman's T‐matrix. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Firstly, the analysis of [A. Büyükaksoy, G. Cinar, A.H. Serbest, Scattering of plane waves by the junction of transmissive and soft-hard half planes, ZAMP 55 (2004) 483-499] for the scattering of plane waves by the junction of transmissive and soft-hard half planes is extended to the case of a line source. The introduction of the line source changes the incident field and the method of solution requires a careful analysis in calculating the scattered field. The graphical results are presented using MATHEMATICA. We observe that the graphs of the plane wave situation [A. Büyükaksoy, G. Cinar, A.H. Serbest, Scattering of plane waves by the junction of transmissive and soft-hard half planes, ZAMP 55 (2004) 483-499] can be recovered by shifting the line source to a large distance. Subsequently, the problem is further extended to the case of scattering due to a point source using the results obtained for a line source excitation. The introduction of a point source (three dimensions) involves another variable which then requires the calculation of an additional integral appearing in the inverse transform.  相似文献   

13.
Electromagnetic wave scattering phenomena for target identification are important in many applications related to fundamental science and engineering. Here, we present an analytical formulation for the calculation of the magnetic and electric fields that scatter off a highly conductive ellipsoidal body, located within an otherwise homogeneous and isotropic lossless medium. The primary excitation source assumes a time-harmonic magnetic dipole, precisely fixed and arbitrarily orientated that operates at low frequencies and produces the incident fields. The scattering problem itself is modeled with respect to rigorous expansions of the electromagnetic fields at the low-frequency regime in terms of positive integral powers of the real wave number of the ambient. Obviously, the Rayleigh static term and a few dynamic terms are sufficient for the purpose of the present work, as the additional terms are neglected due to their minor contribution. Therein, the classical Maxwell's theory is suitably modified, leading to intertwined either Laplace's or Poisson's equations, accompanied by the impenetrable boundary conditions for the total fields and the limiting behavior at infinity. On the other hand, the complete spatial anisotropy of the three-dimensional space is secured via the introduction of the genuine ellipsoidal coordinate system, being appropriate for tackling incrementally such scattering boundary value problems. The nonaxisymmetric fields are obtained via infinite series expansions in terms of ellipsoidal harmonic eigenfunctions, providing handy closed-form solutions in a compact fashion, whose validity is verified by a straightforward reduction to simpler geometries of the metal object. The main idea is to demonstrate an efficient methodology, according to which the constructed analytical formulae can offer the appropriate environment for a fast numerical estimation of the scattered electromagnetic fields that could be useful for real data inversion.  相似文献   

14.
The famous Atkinson-Wilcox theorem claims that any scattered field, no matter what the boundary conditions on the surface of the scatterer are, can be expanded into a uniformly and absolutely convergent series in inverse powers of distance and that once the leading coefficient of the expansion is known the full series can be recovered up to the smallest sphere containing the scatterer in its interior. The leading coefficient of the series is nothing else but the scattering amplitude. This is a very useful theorem, which provides the exact analogue of the Sommerfeld radiation condition, but it has the disadvantage of recovering the scattered field only outside the sphere circumscribing the scatterer. This means that an elongated obstacle which has a very large, as it compares to its volume, circumscribing sphere leaves a lot of exterior space where the scattered field cannot be recovered from its scattering amplitude. In the present work the Atkinson-Wilcox theorem has been extended to the ellipsoidal system where the theorem as well as the relative recovering algorithm holds true all the way down to the smallest circumscribing ellipsoid. Considering the anisotropic character of the ellipsoidal geometry it is obvious that an appropriately chosen ellipsoid can fit almost every smooth convex obstacle. Furthermore, such a result offers the best opportunity to develop a hybrid method based on the theory of infinite elements. Two orientations dependent differential operators are introduced in the recurrence scheme which, as the ellipsoid degenerates to a sphere, one of them vanishes, while the other reduces to the Beltrami operator. A reduction to spherical geometry is also included.  相似文献   

15.
A point generated incident field impinges upon a small triaxialellipsoid which is arbitrarily oriented with respect to thepoint source. The point source field is so modified as to beable to recover the corresponding results for plane wave incidencewhen the source recedes to infinity. The main difficulty insolving analytically this low-frequency scattering problem concernsthe fitting of the spherical geometry, which characterizes theincident field, with the ellipsoidal geometry which is naturallyadapted to the scatterer. A series of techniques has been usedwhich lead finally to analytic solutions for the leading twolow-frequency terms of the near as well as the far field. Incontrast to the near-field approximations, which are expressedin terms of ellipsoidal eigenexpansions, the far field is furnishedby a finite number of terms. This is very interesting becausethe constants entering the expressions of the Lamé functionsof degree higher than three are not obtainable analyticallyand therefore, in the near field, not even the Rayleigh approximationcan be completely obtained. On the other hand, since only afew terms survive at the far field, the scattering amplitudeand the scattering cross-section are derived in closed form.It is shown that, in practice, if the source is located a distanceequal to five or six times the biggest semiaxis of the ellipsoidthe Rayleigh term of the approximation behaves almost as theincident field was a plane wave. The special cases of spheroids,needles, discs, spheres as well as plane wave incidence arerecovered. Finally, some theorems concerning monopole and dipolesurface potentials are included.  相似文献   

16.
In recent years, inverse scattering problems have received much attention because of their important applications. Given the incident and scattered waves, an inverse scattering problem in general is to determine the properties of the scatterer. In radar or sonar a known incident wave and observed scattered wave are used to detect the properties and the presence of aircraft or submarine objects; in MRI scanning, tomography X-rays and ultrasound, scattered waves are used to determine the presence or properties of tumors by detecting density variations, to name a few. In this article, we are concerned with the two-dimensional electromagnetic inverse scattering problem. An iterative algorithm for the transversal electric waves will be given based on a singular domain integral equation formulation. Basic features of a scattering object such as shape, location and index of refraction will be recovered from measurements of the field scattered by the object (when illuminated by electromagnetic waves with the magnetic vector polarized along the cylinder axis). Some numerical experiments are included to illustrate the efficiency of the algorithm.  相似文献   

17.
In this article solvability results for the direct electromagnetic scattering problem for a mixed perfectly conducting-impedance screen in a chiral environment is studied. In particular, incident time-harmonic electromagnetic waves in a chiral medium upon a partially coated open surface Γ (the ‘screen’), that satisfies an impedance boundary condition on one side and a perfectly conducting boundary condition on the other side, are considered. We introduce the Beltrami fields, appropriate boundary integral relations for these fields are proved and via them a uniqueness result is established. A variational method in a suitable functional space setting is considered and using a Calderon type operator for the chiral case, existence for the scattering problem is established.  相似文献   

18.
We consider the low‐frequency scattering problem of a point source generated incident field by a small penetrable sphere. The sphere, which is also lossy, contains in its interior a co‐ecentric spherical core on the boundary of which an impedance boundary condition is satisfied. An appropriate modification of the incident wave field allows for the reduction of the solution to the corresponding scattering problem of plane wave incidence, by moving the point source to infinity. For the near field, we obtain the low‐frequency coefficients of the zeroth and the first order. This was done with the help of the corresponding solution for the hard core problem and an appropriate use of linearity with respect to the Robin parameter. In the far field, we derive the leading non‐vanishing terms for the normalized scattering amplitude and the scattering cross‐section, which are both of the second order, as well as for the absorption cross‐section, which is of the zeroth order. The special cases of a lossy or a lossless penetrable sphere, of a resistive sphere, and of a hard sphere are recovered by an appropriate choice of the physical or the geometrical parameters. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
A spherical wave emanating from a point source is scatteredby either a soft or a hard body. The incident spherical wavehas a wavelength which is much larger than the characteristicdimension of the scatterer and it is modified in such a wayas to recover the plane wave incidence when the source pointrecedes to infinity. Using low frequency expansions the scatteringproblem is transformed to a sequence of exterior potential problemsin the presence of a monopole singularity located at the sourceof the incident wave field. Complete expansions for the scatteringamplitude are provided. The method is applied to the cases ofa soft and a hard sphere and the first three approximationsfor the near, as well as the far, field are evaluated. It isobserved that every one, after the first, low frequency approximationof the far field, involves one spherical multipole more thanthe corresponding approximation for the case of an incidentplane wave. As the point singularity tends to infinity, therelative results recover all the known expressions for planeincidence. It is shown that for point excitation the Rayleighapproximation of the scattering amplitude for a hard sphereis of the second order, in contrast to the case of plane excitationwhich is of the third order. Simple algorithms that specifythe radius and the position of a soft and a hard sphere areproposed, which are based on the additional dependence of thescattering amplitude represented by the distance from the pointsource to the centre of the scatterer. The inversion algorithmis shown to be stable whenever the source point is not too faraway from the target sphere. A simple way to decide whetherthe sphere is a soft or a hard body is also provided.  相似文献   

20.
We consider the acoustic wave scattering by an impenetrable obstacle embedded in a multilayered background medium, which is modelled by a linear system constituted by the Helmholtz equations with different wave numbers and the transmission conditions across the interfaces. The aim of this article is to construct an efficient computing scheme for the scattered waves for this complex scattering process, with a rigorous mathematical analysis. First, we construct a set of functions by a series of coupled transmission problems, which are proven to be well-defined. Then, the solution to our complex scattering in each layer is decomposed as the summation in terms of these functions, which are essentially the contributions from two interfaces enclosing this layer. These contributions physically correspond to the scattered fields for simple scattering problems, which do not involve the multiple scattering and are coupled via the boundary conditions. Finally, we propose an iteration scheme to compute the wave field in each layer decoupling the multiple scattering effects, with the advantage that only the solvers for the well-known transmission problems and an obstacle scattering problem in a homogeneous background medium are applied. The convergence property of this iteration scheme is proven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号