首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Micro-arc oxidation (MAO) is commonly applied to modify the surface of titanium (Ti)-based medical implants with a bioactive and porous Ti oxide (TiO2) coating. The study reports a new method of incorporating hydroxyapatite (HA) within the TiO2 coating by MAO and alkali heat treatment (AHT) in the solution containing Ca ion and P ion. The morphology, composition and phase composition of the coatings were analyzed with scanning electron microscopy with energy-dispersive X-ray spectrometer and X-ray diffraction. Surface topography and roughness of the coatings were investigated by atomic force microscopy operated in the tapping mode. The results showed that TiO2-based coatings were obtained on pure Ti by MAO with an electrolyte containing Ca ion and P ion; the prepared MAO coatings were mainly composed of Ca, P, O and Ti. AHT transformed Ca and P to HA crystals. In conclusion, the TiO2/HA composite coatings can be obtained on the surface of pure Ti by MAO and AHT, and the addition of Ca ion and P ion to the AHT solution contributed to the formation of HA.  相似文献   

2.
Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca10(PO4)6(OH)2, or bioglasses in the system SiO2-Na2O-K2O-CaO-MgO-P2O5 with SiO2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H2O vapors, while the bioglass layers were deposited in O2. Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications.  相似文献   

3.
Biocompatible hydroxyapatite coatings (Ca10(PO4)6(OH)2) are used in stomatology and orthopedic surgery as an original structure for production of medical materials. These coatings have been deposited on Si, Ti and VT15-alloy substrates from ablation plasma formed under the impact of pulsed high-power ion beams on a calcium phosphate ceramic target. The nanohardness, Young’s modulus, elastic recovery, adhesion of coatings to substrates, friction constant, and surface roughness were measured.  相似文献   

4.
TiO2 coatings were grown on Ti and Si by Atomic Layer Deposition (ALD) from titanium ethoxide and water at 300 °C in a wide range of the reaction cycles number N = 100-2000. TiO2 coatings were found to be amorphous at low value of N < 300 while the coatings grown at N ≥ 300 revealed anatase polycrystalline structure. The TiO2 coatings bioactivity was evaluated by hydroxyapatite forming ability by the technique of soaking in Simulated Body Fluid (SBF). Correlation between bioactivity and structural properties of TiO2 was determined. X-ray diffraction and scanning electron microscopy with electron probe microanalysis showed that amorphous TiO2 coating did not induce the hydroxyapatite growth whereas anatase resulted in the hydroxyapatite forming on the samples surfaces which confirmed TiO2 anatase bioactivity.  相似文献   

5.
The structure and phase composition of thin a-C:H and a-C:H〈M〉 films (M = Ag, Ti, or Ag + Ti) have been studied by Raman and X-ray photoelectron spectroscopy. The a-C:H〈M〉 films were prepared by ion-plasma magnetron sputtering of a combined target of graphite and metal in an Ar–CH4 gas mixture. The Raman spectra of these films indicate that their structure is amorphous. The a-C:H〈Ag + Ti〉 films have a more graphitized structure in comparison with pure a-C:H films and films containing only one metal. It is established that carbon in the a-C:H〈Ag + Ti〉 films is in the sp 2, sp 3, and C=O states, which are characteristic of the a-C:H, a-C:H〈Ag〉, and a-C:H〈Ti〉 films. In addition, there are also ether (–C–O–C–) or epoxy (?C?O–) carbon groups in the a-C:H〈Ag + Ti〉 films. It has been revealed that silver atoms in the a-C:H〈Ag〉 and a-C:H〈Ag + Ti〉 films form no chemical bonds with carbon, oxygen, and titanium. Titanium in the a-C:H〈Ti〉 and a-C:H〈Ag + Ti〉 films exists in the form of titanium IV oxide (TiO2).  相似文献   

6.
TiO2-based coatings were formed on titanium alloy by plasma electrolytic oxidation (PEO) in an electrolyte containing nano-HA, calcium salts and phosphates. Bioactive surface was formed after chemical treatment (NaOH aqueous solution) of the PEO coating. The surface of the PEO coating was mainly composed of Ti, O, Ca and P showing anatase and rutile; while that of the chemically treated PEO (CT-PEO) coating mainly contains Ti, O, Ca and Na showing anatase, rutile and amorphous phase. And the chemically treated surface exhibits dissolution of P and introduction of Na during the chemical treatment process. The chemical treatment has no effect on the chemical states of Ca and Ti of the PEO coating. In addition, the surface constituents of the CT-PEO coating show a uniform distribution near its surface with increasing depth. When incubated in a simulated body fluid for 7 and 14 days, the PEO coating does not exhibit apatite-forming ability; however, apatite was successfully deposited on the CT-PEO coating after 7 days probably due to the formation of hydroxyl functionalized surface, enhancing the heterogeneous nucleation of apatite. The addition of nano-HA in the electrolyte has effects on the surface character and apatite-forming ability of the PEO coating; however, it has no obvious influence on those of the CT-PEO coatings.  相似文献   

7.
A new method for high-quality hydroxyapatite (HAp) coating is developed, the laser-assisted laser ablation method. In this method, two lasers are used. One is used for ablation of a HAp target. The other, the assist laser, is used to irradiate a Ti substrate surface. The effects of the assist laser irradiation are to anneal the HAp coating and to improve its adhesive strength to the Ti substrate. The quality of the HAp coating depends on the delay time of the assist-laser irradiation. HAp coatings obtained at a delay time of 10 microseconds or more are more amorphous. It was confirmed that the amorphous part of a coating dissolves in simulated body fluid, while the crystalline part does not. The value of the Ca/P ratio in a coating obtained at a delay time of a few microseconds is close to the stoichiometric value. PACS 81.16.Mk  相似文献   

8.
The extension of pulsed laser deposition to the synthesis on Ti substrates of β-tricalcium phosphate (β-TCP) coatings doped with manganese is reported. Targets sintered from two crystalline Mn-doped β-TCP powders (with the composition Ca2.9Mn0.1(PO4)2 and Ca2.8Mn0.2(PO4)2) were ablated with an UV KrF* (λ = 248 nm, τ ∼ 7 ns) laser source. X-ray diffraction and energy dispersive X-ray spectroscopy investigations showed that the films, while prevalently amorphous, had a Ca/P ratio of about 1.50-1.52. Scanning electron microscopy analyses revealed a rather homogeneous aspect of the coatings which were molded to the relief of the chemically etched Ti substrate. Fluorescence microscopy was applied to test the proliferation of mesenchymal stem cells grown on the obtained biostructures. Our investigations found that, even 14 days after cultivation, the synthesized films were not cytotoxic. On the contrary, they showed excellent bioactivity, as demonstrated by the neat spread of the cells over the entire surface of Mn-doped β-TCP. When tested in osteoprogenitor cell culture, the Ca2.8Mn0.2(PO4)2 samples revealed a higher potential for proliferation and better viability compared with Ca2.9Mn0.1(PO4)2.  相似文献   

9.
TiO2-based coating containing amorphous calcium phosphate (CaP) was prepared on titanium alloy by microarc oxidation (MAO). The increase in the EDTA-2Na concentration was unfavorable for the crystallization of TiO2. After heat treatment, the amorphous CaP was crystallized. The thickness of the MAO coatings did not change when heat-treated at 400, 600 and 700 °C; while it increased slightly after heat treatment at 800 °C due to the crystallization of amorphous CaP and growth of TiO2. No apparent discontinuity between the coatings and substrates was observed at various heat-treatment temperatures, indicating the MAO coatings with good interfacial bonding to the substrate. The heat treatment did not alter the chemical composition of the MAO coating and the chemical states of Ti, Ca and P elements. However, it increased the roughness (Ra) of the MAO coating and improved the wetting ability of the MAO coating. In this work, preliminary investigation of the MG63 cell proliferation on the surface of the MAO and heat-treated MAO coatings was conducted. The MAO coating surface with about Ra = 220 nm may be suitable for the MG63 cell adhesion and proliferation. The increased roughness of the heat-treated MAO coatings may result in a decrease in the ability for cell adhesion and proliferation.  相似文献   

10.
The microstructural inhomogeneity in the plasma-sprayed hydroxyapatite (HA) coatings was characterized by using electron probe microanalyser (EPMA). A simple and artful method was developed to detect the interface characteristics. All the samples for observation were ground and polished along the direction parallel to the coating surfaces. The BSE images directly and clearly showed the inhomogeneity in the as-sprayed coatings with the amorphous regions being bright gray and crystalline regions being dark gray. X-ray diffractometer (XRD) patterns indicated that after immersion in deionized water for 20 days, bone-like apatite and α-Ca2P2O7 precipitated on the polished surfaces of the as-sprayed HA coatings. The post-heat treatment could eliminate the microstructural inhomogeneity in the coatings. Only β-Ca2P2O7 precipitated on the surfaces of the heat-treated HA coatings. The immersed samples were re-polished till tiny substrate was bared to investigate the effect of immersion on interface. It was shown that the immersion decreased the cohesive strength of the as-sprayed coatings. There were more and broader cracks in the splats that came into contact with the substrate and amorphous phase increased toward the coating-substrate interface. Post-heat treatment was proved to reduce the peeling off of coating during re-polishing operation. It was proposed that the distributions of amorphous phase and cracks in as-sprayed coatings are detrimental to coating properties and should be modified through improving the plasma spraying processing.  相似文献   

11.
Cu–Nb–O films with a thickness of ca. 150 nm were prepared on borosilicate glass substrates using CuNbO3 ceramic target at substrate temperature of 500 °C by pulsed laser deposition. The X‐ray diffraction patterns showed that the Cu–Nb–O films were amorphous or an aggregation of fine crystals. The post‐annealed film at 300 °C in N2 gas showed 80% transmission in visible light (band gap = 2.6 eV) and high p‐type conductivity of 21 S cm–1. The Cu–Nb–O film with a thickness of 100 nm, fabricated from the target with a composition of Cu/Nb = 0.9, showed the highest p‐type conductivity of 116 S cm–1. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The Ruddlesden–Popper phases of the Ca–Ti–O system, Can+1TinO3n+1, are investigated by means of atomistic simulations employing empirical pair potentials. The stability of the phases is examined in terms of various reaction schemes: the formation from the binary oxides, the addition of the perovskite oxide to a given phase, and the reaction between perovskite and rock-salt oxides. The energies of these reactions are compared with results previously obtained for the Ruddlesden–Popper phases of the Sr–Ti–O system. The importance of the disproportionation reaction of the various R–P phases in both Ca and Sr systems is also emphasized. The results obtained are in good agreement with experimental observations regarding both systems.  相似文献   

13.
We studied the influence of porous Al2O3 substrates on Ce-stabilized ZrO2-doped hydroxyapatite thin films morphology pulsed laser deposited on their top. The porosities of substrates were monitored by changing sintering temperatures and measured with a high pressure Hg porosimeter.The depositions were conducted in 50 Pa water vapors by multipulse ablation of the targets with an UV KrF* (λ = 248 nm, τ ∼ 25 ns) excimer laser. The surface morphology of synthesized nanostructures was investigated by scanning electron microscopy and atomic force microcopy. Ca/P ratio within the range 1.67-1.70 was found for hydroxyapatite coatings by energy dispersive spectroscopy.The films were further seeded with mesenchymal stem cells for in vitro tests. The cells showed good attachment and spreading uniformly covering the entire surface of samples. The complexity of film morphology which is increasing with substrate porosity was shown to have a positive influence on cultivated cells density.  相似文献   

14.
An oxide coating with nanostructure was prepared by micro-arc oxidation (MAO) on a biomedical Ti-24Nb-4Zr-7.9Sn alloy. Chemical composition of the coating mainly includes O, Ti, Nb, Ca, P, Na, Zr and Sn, where the ratio of Ca/P is about 1.6. Ti, Nb, Zr and Sn participate in the oxidation to form TO2, Nb2O5, ZrO2 and SnO2 nanocrystals, while Ca, P and Na are present in the form of amorphous phases. After alkali treatment, the surface of the MAO coating becomes rough, and Na concentration increases remarkably while P disappears basically. The alkali treated coating shows better apatite forming ability than the untreated one, as evidenced by apatite formation after SBF immersion for 7 days. The improvement of apatite forming ability of the modified coating is attributed to the formation of a sodium titanate layer and numbers of submicron-scale network flakes. The enhancement of the surface wettability of the alkali treated coating also plays an important role in promoting the apatite forming ability.  相似文献   

15.
The aim of the present work was the improvement of titanium-aluminium nitride (TiAlN) coatings by the solid-solution hardening with carbon atoms leading to titanium-aluminium carbon-nitride (Ti,Al)CxN1-x coatings with varying carbon (x) and nitrogen contents. The request of low deposition temperatures necessary for the coating of heat sensitive materials like tool steels of high hardness and polymers was reached by the application of the room temperature pulsed laser deposition (PLD) technique. A Nd:YAG laser of 1064 nm wavelength operated at two different laser pulse energies was used in the ablation experiments of pure TiAl targets (50 at.% Al) in various C2H2-Ar gas mixtures. Different pulse energies of the laser resulted in changes of the ratio of Ti/Al atoms in the grown coatings. Furthermore, the results reveal a strong proportionality of the gas mixture to the C and N content of the coatings. In the coatings deposited at low C2H2 gas flows the XRD investigations showed crystalline phases with fcc TiN type lattices, whereas high acetylene flows during deposition resulted in the formation of fully amorphous coatings and carbon precipitation or cluster boundaries found in Raman investigations. PACS 81.15.Fg; 46.55.+d  相似文献   

16.
Calcium hydroxyapatite (CaHap) formation when different amounts of Zn(II) are present in the mother solution has been investigated by atomic absorption, infrared and Raman spectroscopies, X-ray diffraction and thermal analysis (DTA and TG). The studied samples have been synthesized at T=95 °C and pH 9 in air. The analysis of the results have shown that the pure CaHap sample crystallizes in the monoclinic form P21/b. Concentrations up to 20% of Zn(II) in the mother solution, equivalent to smaller concentrations in solid (up to 9.1% in wt), favor the formation of the hexagonal apatite, P63/m, while Zn(II) concentrations higher than 20% in solution help an amorphous phase development where vibrational spectra indicated coexistence of two phases: an apatite and ZnNH4PO4·H2O. Infrared data of thermal treated samples endorse that HPO42 ion had not been incorporated in Zn(II) doped samples during the synthesis process. Present results also allow to conclude that Zn(II) cation exhibits a preference to occupy the Ca2 site of the apatite structure and induces water adsorption and a small quantity of CO32− cation incorporation, leading to formation of a less crystalline Ca deficient apatite.  相似文献   

17.
Titanium oxide ceramic coatings were prepared by micro-arc oxidation (MAO) in galvanostatic regime on biomedical NiTi alloy in H3PO4 electrolyte using DC power supply. The surface of the coating exhibited a typical MAO porous and rough structure. The XPS analysis indicated that the coatings were mainly consisted of O, Ti, P, and a little amount of Ni, and the concentration of Ni was greatly reduced compared to that of the NiTi substrate. The TF-XRD analysis revealed that MAO coating was composed of amorphous titanium oxide. The coatings were tightly adhesive to the substrates with the bonding strength more than 45 MPa, which was suitable for medical applications. The curves of potentiodynamic porlarization indicated that the corrosion resistance of NiTi alloy was significantly improved due to titanium oxide formation on NiTi alloy by MAO.  相似文献   

18.
Hydroxyapatite/titania composite material was coated onto a titanium (pure Ti) substrate by sol-gel method. The hydroxyapatite (HA) and titania (TiO2) sol were made from precursor and mixed together. The insertion of TiO2 enhanced the chemical affinity and the physical consistency between HA and Ti substrate. The HA/TiO2 composite coating adhered tightly to the Ti substrate. Owing to the insertion of TiO2, the crystallinity of HA has been delayed. The specimens with HA/TiO2 composite coatings were soaked into SBF, and displayed good bone-like apatite forming ability. The bioactivity of the composite HA coatings were tested in vitro by cell culture.  相似文献   

19.
The coatings of hydroxyapatite, which is widely used for orthopaedic and dental prothesis, were deposited by using the dip-coating method. The layers of hydroxyapatite were grown on commercial Ti substrates. In order to improve the adhesion of hydroxyapatite, the substrate was a priori covered with titania or calcium titanate by using the sol-gel technique. For comparison, commercial samples of hydroxyapatite coating (manufactured by means of plasma-spray apparatus) were analysed. The chemical composition and the structure of the coatings (TiO2, CaTiO3 and hydroxyapatite) were studied by using X-ray photoelectron spectroscopy (XPS), scanning Auger microscopy (SAM), X-ray diffraction (XRD) and secondary electron microscopy (SEM) techniques. The data of quantitative XPS analysis and the surface images (SAM and SEM) displayed the superior quality (cleanness, homogeneity, etc.) of hydroxyapatite deposited by sol-gel in comparison with commercial samples investigated.  相似文献   

20.
a monetite coating on H2O2-treated C/C composites was prepared by ultrasonic induction heating (UIH) technology. Subsequently, this coating was subjected to an ammonia hydrothermal treatment to form a undoped hydroxyapatite (U-HA) coating. Finally, the as-prepared U-HA coating was placed in a NaOH solution and hydrothermally treated to produce the other hydroxyapatite (Na-HA) coating. The structure, morphology and chemical composition of the two HA coatings were characterized by XRD, FTIR, SEM and EDS, the adhesiveness and local mechanical properties, e.g. nanohardness and Young's modulus of the two HA coatings to C/C composites was evaluated by a scratch test and nanoindentation technique respectively. The results showed that the two HA coatings had the alike morphology and crystallization. But, compared with the U-HA coating, the Na-HA coating was doped with Na ions, and gave a Ca/P ratio close to a stoichiometric hydroxyapatite, and thus showed a higher nano-indentation value, Young's modulus, and larger bonding strength. These results verified the strengthened effect of Na ion in hydroxyapatite coating on carbon/carbon (C/C) composities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号