首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
No theory of the polar and azimuthal anchoring energies of liquid crystals (LCs) has been developed on a molecular level, despite the scientific and practical topicality of the problem. The interaction energies of mesogenic molecules with graphite and polyethylene surfaces calculated previously by the method of atom-atom potentials are in good agreement with the experimental data, but, at the same time, the calculated polar and azimuthal anchoring energies are larger than their experimental values by one and two orders of magnitude, respectively. To explain these values, the anchoring energy has been assumed to depend not only on the interaction with the surface but also on the interaction between the LC molecules arranged in the model in the form of quasi-layers. The mesogenic molecules have been modeled by rods with virtual C’ atoms (carbon atoms with hydrogen atoms attached to them) “threaded” on them. The molecule orientation has been specified by the polar and azimuthal angles θ i , φ i and θ j , φ j relative to the directors of the ith and jth layers. The derived polar and azimuthal anchoring energies as well as their dependences on the order parameter have turned out to be close to the experimental data.  相似文献   

2.
The conditions are determined, and the parameters for the onset of the mode of dimeric molecular association in the water system are estimated. The characteristics of dimeric associates of molecules are determined. The region of anomalous thermal compression water is increased from T ≤ 4°C to T ≤ 66.4°C by introducing the temperature equivalent T0 of the energy of proton transition from molecule to molecule into the parameter of resonant interaction of atoms of different molecules. The time of transfer of excitation energy correlates with the periods of the valence and deformation vibrations of the molecules. Therefore, a molecule that performs valence vibrations “has time” to store an excitation energy sufficient to provide a parallel orientation of the spins of the nuclei of the hydrogen atoms in the molecules. Molecules that perform deformation vibrations have zero spins because of the smallness of the frequencies of such vibrations.  相似文献   

3.
Single-walled carbon nanotubes containing 5.4 wt% H are prepared under a hydrogen pressure of 50 kbar at the temperature T = 500°C. Analysis of the optical transmission spectra has revealed that the hydrogenation of single-walled carbon nanotubes brings about suppression of high-frequency conduction provided by free charge carriers in the nanotubes, the disappearance of interband electronic transitions, and the appearance of an absorption line at 2845 cm?1 corresponding to stretching vibrations of the C-H bonds. The removal of hydrogen from hydrogenated single-walled carbon nanotubes owing to vacuum annealing at a temperature of 500°C is accompanied by a linear decrease in the intensity of this line as the hydrogen content in the system decreases. This phenomenon indicates that the greater part of the hydrogen atoms in single-walled carbon nanotubes are covalently bonded to the carbon atoms.  相似文献   

4.
A model is proposed for calculating the thermodynamic functions and the equilibrium density of a one-dimensional chain of molecules (atoms) adsorbed inside a narrow nanotube. The model considers both the interaction between introduced atoms (molecules) and their interaction with the nanotube walls. The quantum-mechanical effects resulting in discrete energy levels of a particle and in its smeared position between neighbors are taken into account. In calculating the free energy at a nonzero temperature, the phonon contribution and the particle transitions to excited levels are considered. The model is applied to calculate the thermodynamic parameters of adsorbed hydrogen molecules inside extremely narrow single-wall carbon nanotubes of the (3,3) and (6,0) type. It is shown that external pressure gives rise to a sequence of first-order phase transitions, which change the density of adsorbed hydrogen molecules.  相似文献   

5.
The temperature dependences of the conductivity σ(T) of a strongly interacting 2D electron system in silicon have been analyzed both in zero magnetic field and in a spin-polarizing magnetic field of 14.2 T that is parallel to the sample plane. The measurements were carried out in a wide temperature range of 1.4–9 K in the ballistic regime of electron-electron interaction, i.e., for Tτ > 1. In zero magnetic field, the data obtained for σ(T) are quantitatively described by the theory of interaction corrections. In the fully spin-polarized state, the measured σ(T) dependences are not linear and even nonmonotonic in the same temperature range, where the dependences σ(T) are monotonic in the absence of the field. Nevertheless, the low-temperature parts of the experimental σ(T) dependences are linear and qualitatively consistent with the calculated quantum corrections.  相似文献   

6.
In the framework of the kinetic approach based on data of technological experiments, the range of characteristic rates of decomposition of disilane radical molecules adsorbed on the surface during the growth of a silicon layer is determined. The relationship between the rate of incorporation of silicon atoms into a growing crystal and the characteristic rate of pyrolysis of hydride molecules on the growing surface is established. The temperature dependences of the decomposition rate of disilane molecules exhibit an unusual activationless behavior in the growth temperature range. The form of the observed dependences is determined by the pyrolysis model, conditions of transferred of hydrogen from an adsorbed molecule onto the surface of the growing layer, being a function of the gas pressure and temperature in the reactor. It is demonstrated that the basic features of the behavior of the decomposition rate of disilane molecules are controlled by the specifics of the interaction of the silicon dihydride molecular beam with the growth surface under conditions of low and high degrees of bonding of hydrogen to free surface bonds. The temperature dependences are qualitatively described by a relation composed of two activation curves with different activation energies at low and high temperatures and preexponential factors depending on the surface coverage by hydrogen atoms.  相似文献   

7.
Simultaneous study of the dependences of the structural parameters, electrical, and magnetic properties of hafnium disulfide intercalated iron atoms in the dependence on the intercalate concentration and temperature has been performed for the first time. The temperature dependences of the electrical resistance are shown to exhibit the activation character with the activation energies characteristic of impurity conduction. The effective magnetic moments of iron ions in Fe x HfS2 is found to be significantly lesser than the values of free iron ions and to decrease as the iron content increases. The character of the temperature dependences of the effective magnetic moments and negative values of the paramagnetic Curie temperatures indicate possible interactions of the antiferromagnetic type between intercalated atoms. However, the dependences of the magnetization on field for Fe0.33HfS2 and Fe0.5HfS2 obtained at T = 2 K demonstrate the hysteresis phenomenon characteristic of the ferromagnetic state. The results are discussed assuming the existence of hybridization 3d electron states of intercalated iron atoms with the electronic states of HfS2 matrices and the competition of various exchange interaction.  相似文献   

8.
Methane gas (CH4) is a chemical compound comprising a carbon atom surrounded by four hydrogen atoms, and carbon nanotubes have been proposed as possible molecular containers for the storage of such gases. In this paper, we investigate the interaction energy between a CH4 molecule and a carbon nanotube using two different models for the CH4 molecule, the first discrete and the second continuous. In the first model, we consider the total interaction as the sum of the individual interactions between each atom of the molecule and the nanotube. We first determine the interaction energy by assuming that the carbon atom and one of the hydrogen atoms lie on the axis of the tube with the other three hydrogen atoms offset from the axis. Symmetry is assumed with regard to the arrangement of the three hydrogen atoms surrounding the carbon atom on the axis. We then rotate the atomic position into 100 discrete orientations and determine the average interaction energy from all orientations. In the second model, we approximate the CH4 molecule by assuming that the four hydrogen atoms are smeared over a spherical surface of a certain radius with the carbon atom located at the center of the sphere. The total interaction energy between the CH4 molecule and the carbon nanotube for this model is calculated as the sum of the individual interaction energies between both the carbon atom and the spherical surface and the carbon nanotube. These models are analyzed to determine the dimensions of the particular nanotubes which will readily suck-up CH4 molecules. Our results determine the minimum and maximum interaction energies required for CH4 encapsulation in different tube sizes, and establish the second model of the CH4 molecule as a simple and elegant model which might be exploited for other problems.  相似文献   

9.
The free energy components of two low pressure crystalline ices and an amorphous form of water are calculated over a wide range of temperatures. The Gibbs free energy at a given temperature is minimized with respect to volume of a system. This enables us to evaluate a thermal expansivity at fixed temperature and pressure from only intermolecular interaction potential. The negative thermal expansivity at low temperature is obtained for both crystalline ices and an amorphous form, which arises from the bending motion of hydrogen bonded molecules.  相似文献   

10.
陈其峰  蔡灵仓  陈栋泉  经福谦 《中国物理》2005,14(10):2077-2082
The self-consistent fluid variational model (SFVM) has been used to describe the pressure dissociation of dense hydrogen at high temperatures. This paper focuses on a mixture of hydrogen atoms and molecules and is devoted to the study of the phenomenon of pressure dissociation at finite temperatures. The equation of state and dissociation degree have been calculated from the free energy functions in the range of temperature 2000-10,000K and density 0.02-1.0g/cm^3, which can be compared with other approaches and experiments. The pressure dissociation is found to occur in higher density range, while temperature dissociation is a more gradual effect.  相似文献   

11.
The effect of nuclear and Coulomb interactions on the shapes of two colliding208Pb nuclei at finite temperature is investigated. The complex potential energy density derived by Faessler and collaborators and the kinetic energy density and entropy density for two Fermi spheres at finite temperature are used to calculate the free energy of the208Pb +208Pb system in the energy density formalism. Shell corrections are added to the free energy in the framework of the Strutinsky method. The total free energy is minimized with respect to the quadrupole deformation and the diffuseness to determine the density distribution of208Pb nucleus at certain distanceR and temperatureT assuming the deformed Woods-Saxon shape for each nucleus. It is found that the nucleus acquires larger deformation and diffuseness as the temperature increases. The interaction potential between two208Pb nuclei is calculated from the minimized free energy. The total (nuclear + Coulomb) potential is found to decrease with increasing temperature, whereas the real part of the nuclear potential becomes more repulsive as the temperature increases.  相似文献   

12.
It has been shown within the Landauer approach that the presence of the 0.7 anomaly in the conductance of a ballistic microcontact and the respective plateau in the thermopower implies pinning of the potential barrier height at a depth of k B T below the Fermi level. A simple way of taking into account the effect of electron-electron interaction on the profile and temperature dependence of a smooth one-dimensional potential barrier in the lower subband of the microcontact has been proposed. The calculated temperature dependences of the conductance and Seebeck coefficient agree with the experimental gate-voltage dependences, including the emergence of anomalous plateaus with an increase in temperature.  相似文献   

13.
The properties of nuclear matter are studied in the frame of the Brueckner theory. The Brueckner-Hartree-Fock approximation plus two-body density-dependent Skyrme potential which is equivalent to three-body interaction are used. Various modern nucleon-nucleon potentials are used in the framework of the Brueckner-Hartree-Fock approximation, e.g.: CD-Bonn potential, Nijm1 potential, and Reid 93 potential. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. The equation of state at T = 0, pressure at T = 0, 8, and 12 MeV, free energy at T = 8 and 12 MeV, nuclear matter incompressibility, and the symmetry energy calculation are presented. The hot properties of nuclear matter are calculated using T 2-approximation method at low temperatures. Good agreement is obtained in comparison with previous theoretical estimates and experimental data, especially at low densities.  相似文献   

14.
The temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T 1 were investigated in order to study the hydrogen transfer dynamics in carboxylic acid dimers in 3,5-dichloro- and 2,6-dichlorobenzoic acids. The asymmetry energy A/ k B and the activation energy V/ k B for the hydrogen transfer were estimated to be 240 K and 900 K, and 840 K and 2500 K, respectively, for these compounds. In spite of a large asymmetric potential the quantum nature of hydrogen transfer is recognized in the slope of the temperature dependence of T 1 on the low-temperature side of the T 1 minimum. The NQR T 1 measurements was revealed to be a good probe for the hydrogen transfer dynamics.  相似文献   

15.
We have studied 1D exciton relaxation dynamics in semiconducting single-walled carbon nanotubes (SWNTs) by femtosecond pump–probe experiments. The time evolution of change in transmittance ΔT/T induced by photo-excitation varies depending on the tube diameter. The decay time decreases with a decrease in the tube diameter. Pressure measurements have been conducted to explore the relaxation mechanism. The deformation potential estimated from the pressure dependence of photoluminescence spectra increases with decreasing tube diameter. This means that the exciton–phonon interaction becomes stronger in the smaller diameter tubes. The diameter dependences of decay time and deformation potential suggest that the exciton–phonon interaction plays an important role in exciton nonradiative relaxation process in semiconducting SWNTs.  相似文献   

16.
A simple physical model is proposed for dissociating dense fluid hydrogen. We propose that free dissociated atoms interact via quantum electron-electron exchange analogously to the interaction in the liquid-metal phase of alkali metals. The density dependence of a hydrogen atom’s binding energy in such a quasi-liquid is calculated. It is shown that the transition from the molecular fluid to liquid hydrogen is a first-order phase transition. The critical parameters of the transition are determined: P c = 72 GPa, T c = 10500 K, and ρ c = 0.5 g/cm3. The possibility of the metastable existence of atomic liquid hydrogen in a dissociated molecular fluid under decreased pressure is established.  相似文献   

17.
锂原子修饰B6团簇的储氢性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
阮文  罗文浪  余晓光  谢安东  伍冬兰 《物理学报》2013,62(5):53103-053103
利用密度泛函理论研究B6和LimB6 (m= 1–2)团簇的结构及其储氢性能. 结果表明, 氢分子在B6团簇的三种可能结构中均发生解离吸附, Li原子在B6团簇表面不发生团聚,每一个Li原子均吸附几个氢分子. 其中以两个Li原子修饰笼形B6团簇吸附完整氢分子数最多,储氢质量分数为20.38%, 氢分子的平均吸附能为1.683 kcal/mol,表明了它在常温常压条件下作为储氢材料的可行性. 关键词: mB6 (m=1-2)团簇')" href="#">LimB6 (m=1-2)团簇 密度泛函理论(DFT) 吸附能 储氢性能  相似文献   

18.
The behavior under pressure of the high spin–low spin phase transition in the coordination compounds containing 3d ions is analyzed using thermodynamic and microscopic approaches. For thermodynamic approach the mean field model with interactions between spin-crossover molecules is considered. Microscopic model takes into account the interaction of d electrons of the transition metal ions with full symmetric distortions of the ligands. The relationship of the thermodynamic interaction parameters with microscopic ones is installed and shown how the quantum–mechanical interactions form the cooperativity of the system. Within the microscopic model the temperature and pressure dependences of the high spin fraction in 2-D compounds {Fe(3-Fpy)2[M(CN)4]} (M=Pd, Pt) are simulated and microscopic parameters are evaluated. It is concluded that different experimental behaviors of the temperature and pressure induced spin transitions are determined by different variations of the inelastic and elastic energies under pressure, and vibrational component of the free energy drives the ST equally with electronic part.  相似文献   

19.
Using the dependences of melting point Tm and crystallization point Tc on the number of atoms (N) in a spherical silicon crystal that were calculated elsewhere [6] by the method of molecular dynamics, (i) the number of atoms at which the latent heat of the solid–liquid phase transition disappears and (ii) temperature T0 = Tm(N0) = Tc(N0) below which solidifying nanoclusters remain noncrystalline are estimated. These values are found to be N0 = 22.8156 and T0 = 400.851 K. The N dependences for silicon melting parameters, namely, a jump of entropy of melting, latent melting heat, slope of the melting line, and jumps in the surface energy and volume, are derived.  相似文献   

20.
A model of phase transitions in double-well Morse potential is developed. Application of this model to the hydrogen bond is based on ab initio electron density calculations, which proved that the predominant contribution to the hydrogen bond energy originates from the interaction of proton with the electron shells of hydrogen-bonded atoms. This model uses a double-well Morse potential for proton. Analytical expressions for the hydrogen bond energy and the frequency of O–H stretching vibrations were obtained. Experimental data on the dependence of O–H vibration frequency on the bond length were successfully fitted with model-predicted dependences in classical and quantum mechanics approaches. Unlike empirical exponential function often used previously for dependence of O–H vibration frequency on the hydrogen bond length (Libowitzky, Mon. Chem., 1999, vol.130, 1047), the dependence reported here is theoretically substantiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号