首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The title compound, C12H19N3O2, is an unusual product of silica‐catalyzed intermolecular condensation of α‐amino­isobutyric acid. The mol­ecule has three types of C—N bonds: a double bond, a cis‐amide bond and single bonds, two of which are typical and two having intermediate lengths due to π‐electron delocalization between C=N and C=O groups. The cis‐amide moieties interact to form dimers via hydrogen bonds which stack in parallel layers.  相似文献   

2.
Aromatic amines is not used commonly in allylic amination, presumably because of their less nucleophilic nature compared with the more extensively used benzylamine or relatively stable anionic nitrogen nucleophiles. An eco‐friendly method for C–O bond activation of allylic acetates using palladium associated with ligands in water leading to N‐allylation was described in this study. The palladium‐catalyzed allylic amination of allylic acetate with aminonaphthalenes gave 34–95% yields to the corresponding N‐allylic aminonaphthalenes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A palladium‐catalyzed C?H activation strategy has been successfully employed for exclusive synthesis of a variety of 3‐substituted indoles. A [3+3] annulation for synthesizing substituted 2‐quinolinones was recently developed by reaction of α,β‐unsaturated carboxylic acids with diarylamines under acidic conditions. In the present work, an analogous [3+2] annulation is achieved from the same set of starting materials under basic conditions to generate 1,3‐disubstituted indoles exclusively. Mechanistic studies revealed an ortho‐palladation–π‐coordination–β‐migratory insertion–β‐hydride elimination reaction sequence to be operative under the reaction conditions.  相似文献   

4.
An efficient one‐pot N‐alkylation of benzimidazole and benzotriazole from carbonyl compounds and tosylhydrazide has been accomplished via copper powder‐catalyzed N—H bond insertion affording N‐alkylated products in good yields. The reaction can tolerate a wide range of carbonyl compounds, such as aryl, alkyl, heterocyclic and α,β‐unsaturated ketones, and aldehydes.  相似文献   

5.
A facile access to optically active cyclic ureas was developed through palladium‐catalyzed asymmetric hydrogenation of pyrimidines containing tautomeric hydroxy group with up to 99 % ee. Mechanistic studies indicated that reaction pathway proceed through hydrogenation of C=N of the oxo tautomer pyrimidin‐2(1H)‐one, acid‐catalyzed isomerization of enamine–imine, and hydrogenation of imine pathway. In addition, the chiral cyclic ureas are readily converted into useful chiral 1,3‐diamine and thiourea derivatives without loss of optical purity.  相似文献   

6.
Efficient ruthenium‐, rhodium‐, palladium‐, copper‐ and iridium‐catalysed methodologies have been recently developed for the synthesis of quinolines by the reaction of 2‐aminobenzyl alcohols with carbonyl compounds (aldehydes and ketones) or the related alcohols. The reaction is assumed to proceed via a sequence involving initial metal‐catalysed oxidation of 2‐aminobenzyl alcohols to the related 2‐aminobenzaldehydes, followed by cross aldol reaction with a carbonyl compound under basic conditions to afford α,β‐unsaturated carbonyl compounds. These aldehydes or ketones can be also generated in situ via dehydrogenation of the related primary and secondary alcohols. In the final step cyclodehydration of the α,β‐unsaturated carbonyl compound intermediates gives quinolines. Good yields of quinolines were also obtained by reacting 2‐nitrobenzyl alcohols and secondary alcohols in the presence of a ruthenium catalyst. Finally, aniline derivatives afforded also a useful access to quinolines by the reaction with 1,3‐propanediol or 3‐amino‐1‐propanol, or in a three‐component reaction with benzyl alcohol and aliphatic alcohols.  相似文献   

7.
A new, general palladium‐catalyzed oxidative strategy for the cleavage of the C≡C triple bond is presented. By employing PdCl2, CuBr2, TEMPO and air as the catalytic system and H2O as the carbonyl oxygen atom source, a wide range of 2‐alkynyl carbonyl compounds, including 1,3‐disubstituted prop‐2‐yn‐1‐ones, propiolamides and propiolates, lost an alkynyl carbon to access various 1,2‐dicarbonyl compounds, e.g., 1,2‐diones, 2‐keto amides and 2‐keto esters, through Wacker oxidation, intramolecular cyclization and C—C bond cleavage cascades.  相似文献   

8.
Herein, we present a strategy for the formation of 2‐fluoro‐1,3‐diene derivatives via rhodium‐catalyzed direct C(sp2)—C(sp2) cross‐coupling of gem‐difluoroalkenes and acrylamides. By merging Rh(III)‐catalyzed C(sp2)–H bond activation and nucleophilic addition/F‐elimination of gem‐difluoroalkene, an efficient defluorinative vinylation reaction is uncovered, which leads to the generation of 2‐fluoro‐1,3‐dienes in moderate to good yields with excellent stereoselectivity under mild conditions. Preliminary mechanistic study suggests unique effects of fluorine substituents which allow the reactivity profile not observed with the congeners bearing heavier halides.  相似文献   

9.
The title compound (systematic name: 3‐benzyl­idene‐6‐iso­butyl­piperazine‐2,5‐dione), C15H18N2O2, an α,β‐dehydro­phenyl­alanine containing diketopiperazine, crystallizes in the space group P1 with two mol­ecules in the asymmetric unit arranged antiparallel to one another. The α,β‐dehydro­phenyl­alanine (ΔPhe) residue in this cyclic peptide retains its planarity but deviates from the standard conformations observed in its linear analogues. Each type of mol­ecule forms a linear chain with mol­ecules of the same type via pairwise N—H⋯O hydrogen bonds, while weaker C—H⋯O inter­actions link the chains together to form a three‐dimensional network.  相似文献   

10.
A C?H activation strategy has been successfully employed for the high‐yielding synthesis of a diverse array of 4‐substituted 2‐quinolinone species by a palladium‐catalyzed dehydrogenative coupling involving diarylamines. This intermolecular annulation approach incorporates readily available α,β‐unsaturated carboxylic acids as the coupling partner by suppressing the facile decarboxylation. Based on preliminary mechanistic studies, a reaction sequence is proposed, involving ortho palladation, π‐coordination, β‐migratory insertion, and β‐hydride elimination.  相似文献   

11.
A novel radical [1,3]‐nitrogen shift catalyzed by copper diacetate under an oxygen atmosphere (1 atm) has been developed for the construction of a diverse range of indole derivatives from α,α‐disubstituted benzylamine. In this reaction, oxygen was used as a clean terminal oxidant, and water was produced as the only by‐product. Five inert bonds were cleaved, and two C−N bonds and one C−C double bond were constructed in one pot during this transformation. This unique method demonstrated broad application protential for the late‐stage modification of biologically active natural products and drugs. Mechanistic investigations indicate that a unique 4‐exo ‐trig cyclization of an aminyl radical onto a phenyl ring is involved in the catalytic cycle.  相似文献   

12.
We report the development of a silicon nanowire array‐stabilized palladium nanoparticle catalyst, SiNA‐Pd. Its use in the palladium‐catalyzed Mizoroki‐Heck reaction, the hydrogenation of an alkene, the hydrogenolysis of nitrobenzene, the hydrosilylation of an α,β‐unsaturated ketone, and the C‐H bond functionalization reactions of thiophenes and indoles achieved a quantitative production with high reusability. The catalytic activity reached several hundred‐mol ppb of palladium, reaching a TON of 2 000 000.  相似文献   

13.
The title compounds, namely 2,6‐bis[(1,3‐dimethylimidazolin‐2‐ylidene)amino]pyridinium perchlorate, C15H24N7+·ClO4, (I), and bis{2,6‐bis[(1,3‐dimethylimidazolin‐2‐ylidene)amino]pyridinium} μ‐oxido‐bis[trichloridoiron(III)], (C15H24N7)2[Fe2Cl6O], (II), are structurally unusual examples of the organization of molecular units via base pairing. The cations in salts (I) and (II) are derived from the bisguanidine N2,N6‐bis(1,3‐dimethylimidazolin‐2‐ylidene)pyridine‐2,6‐diamine, which associates in centrosymmetric pairs via two N—H...N hydrogen‐bond interactions. N—H...N bridges are formed between the protonated pyridine N atom and one of the nonprotonated guanidine N atoms, with N...H distances of 2.01 (1)–2.10 (1) Å. Compound (I) contains two crystallographically independent cations and anions per asymmetric unit. One of the perchlorate anions is disordered, while the [Fe2Cl6O]2− anion lies on an inversion centre.  相似文献   

14.
We report Ir‐catalyzed, enantioselective allylic substitution reactions of unstabilized silyl enolates derived from α,β‐unsaturated ketones. Asymmetric allylic substitution of a variety of allylic carbonates with silyl enolates gave allylated products in 62–94 % yield with 90–98 % ee and >20:1 branched‐to‐linear selectivity. The synthetic utility of this method was illustrated by the short synthesis of an anticancer agent, TEI‐9826.  相似文献   

15.
A variety of N‐alkyl‐α,α‐dichloroaldimines were vinylated by terminal acetylenes in the presence of Lewis acids such as In(OTf)3 or BF3 ? OEt2 and hexafluoroisopropanol (HFIP) as an additive. The reaction proceeds at ambient temperature and leads to geometrically pure allylic β,β‐dichloroamines. This approach is complementary to previously reported transition‐metal‐catalyzed vinyl‐transfer methods, which are not applicable to aliphatic imines and are restricted to imines that contain an electron‐withdrawing nitrogen substituent. In the present approach, terminal alkynes were used as a source of the vinyl residue, and the N‐alkyl moiety of the imine acts as a sacrificial hydrogen donor. The additional advantage of this methodology is the fact that no external toxic or hazardous reducing agents or molecular hydrogen has to be used. This new methodology nicely combines a C(sp2)? C(sp) bond formation, hydride transfer, and an unusual cleavage of an unactivated C? N bond, thereby giving rise to functionalized primary allylic amines. A detailed experimental study supported by DFT calculations of the mechanism has been done.  相似文献   

16.
The title compound, C26H21NO2S2, which consists of a benzo­thia­zole skeleton with α‐naphthyl­vinyl and tosyl groups at positions 2 and 3, respectively, was prepared by palladium–copper‐catalyzed heteroannulation. The E configuration of the mol­ecule about the vinyl C=C bond is established by the benzothiazole–naphthyl C—C—C—C torsion angle of 177.5 (4)°. The five‐membered heterocyclic ring adopts an envelope conformation with the Csp3 atom 0.380 (6) Å from the C2NS plane. The two S—C [1.751 (4) and 1.838 (4) Å] and two N—C [1.426 (5) and 1.482 (5) Å] bond lengths in the thia­zole ring differ significantly.  相似文献   

17.
《化学:亚洲杂志》2017,12(15):1865-1868
A facile synthesis of 2‐amino‐1,3‐oxazoles via CuI‐catalyzed oxidative cyclization of enamines and N ,N ‐dialkyl formamides has been developed. The reaction proceeds through an oxidative C−N bond formation, followed by an intramolecular C(sp2)−H bond functionalization/C−O cyclization in one pot. This protocol provides direct access to useful 2‐amino‐1,3‐oxazoles and features protecting‐group‐free nitrogen sources, readily available starting materials, a broad substrate scope and mild reaction conditions.  相似文献   

18.
In the tricyclic nucleoside 7‐(β‐d ‐ribo­furan­osyl)‐7H‐imidazo­[1,2‐c]­pyrazolo­[4,3‐e][1,2,3]­triazine, C11H12N6O4, the con­formation of the N‐gly­cosyl bond is intermediate between anti and high anti [χ = −103.5 (3)°]. The ribo­furan­ose moiety adopts a 3T2 sugar pucker (S‐type sugar) and the conformation at the exocyclic C—C bond is ap (gauchetrans). Molecules of the title compound form a three‐dimensional network via three medium–strong intermolecular hydrogen bonds (one O—H⋯N and two O—H⋯O bonds).  相似文献   

19.
Ni0‐catalyzed chemo‐ and enantioselective [3+2] cycloaddition of cyclopropenones and α,β‐unsaturated ketones/imines is described. This reaction integrates C?C bond cleavage of cyclopropenones and enantioselective functionalization by carbonyl/imine group, offering a mild approach to γ‐alkenyl butenolides and lactams in excellent enantioselectivity (88–98 % ee) through intermolecular C?C activation.  相似文献   

20.
Ligand development for rhodium(III)‐catalyzed C−H activation reactions has largely been limited to cyclopentadienyl (Cp) based scaffolds. 2‐Methylquinoline has now been identified as a feasible ligand that can coordinate to the metal center of Cp*RhCl to accelerate the cleavage of the C−H bond of N ‐pentafluorophenylbenzamides, providing a new structural lead for ligand design. The compatibility of this reaction with secondary free amines and anilines also overcomes the limitations of palladium(II)‐catalyzed C−H amination reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号