首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A remarkably efficient three‐component reaction to synthesize 2‐amino‐4H‐chromenes derivatives from malononitrile, various aromatic aldehydes, and orcinol was described at room temperature in CH2Cl2 in the presence of catalytic amount of triethylamine. In a facile one‐pot procedure, excellent yields of products were achieved in less than 1 h. Some of the synthesized 2‐amino‐4H‐chromenes derivatives demonstrated potent antibacterial activities against Gram‐positive bacteria including Staphylococcus aureus and Bacillus anthracis, indicated by disk method, minimum inhibitory concentration, and minimum bactericidal concentration approaches. However, none of the tested compounds expressed any antibacterial activities against Enterococcus faecalis and Gram‐negative bacteria.  相似文献   

2.
Three polymorphs of 4,4′‐diiodobenzalazine (systematic name: 4‐iodobenzaldehyde azine), C14H10I2N2, have crystallographically imposed inversion symmetry. 4‐Chloro‐4′‐iodobenzalazine [systematic name: 1‐(4‐chlorobenzylidene)‐2‐(4‐iodobenzylidene)diazane], C14H10ClIN2, has a partially disordered pseudocentrosymmetric packing and is not isostructural with any of the polymorphs of 4,4′‐diiodobenzalazine. All structures pack utilizing halogen–halogen interactions; some also have weak π (benzene ring) interactions. A comparison with previously published methylphenylketalazines (which differ by substitution of methyl for H at the azine C atoms) shows a fundamentally different geometry for these two classes, namely planar for the alazines and twisted for the ketalazines. Density functional theory calculations confirm that the difference is fundamental and not an artifact of packing forces.  相似文献   

3.
An efficient method for the synthesis of N‐alkylated 2‐(4‐substituted‐1H‐1,2,3‐triazol‐1‐yl)‐1H‐indole‐3‐carbaldehyde has been developed starting from oxindole and indole using Huisgen's 1,3‐dipolar cycloaddition reaction of organic azides to alkynes. The effect of catalysts and solvent on these reactions has been investigated. Among all these conditions, while using CuSO4·5H2O, DMF was found to be the best system for this reaction. It could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of halides, azides, and alkynes. The Huisgen's 1,3‐dipolar cycloaddition reaction was performed using CuSO4·5H2O in DMF with easy work‐up procedure.  相似文献   

4.
The title enanti­omorphic compounds, C16H23NO4S, have been obtained in an enanti­omerically pure form by crystallization from a diastereomeric mixture either of (2S,4S)‐ and (2R,4S)‐ or of (2R,4R)‐ and (2S,4R)‐2‐tert‐butyl‐4‐methyl‐3‐(4‐tolyl­sulfon­yl)‐1,3‐oxazolidine‐4‐carbaldehyde. These mixtures were prepared by an aziridination rearrangement process starting with (S)‐ or (R)‐2‐tert‐butyl‐5‐methyl‐4H‐1,3‐dioxine. The crystal structures indicate an envelope conformation of the oxazolidine moiety for both compounds.  相似文献   

5.
4,6‐Substituted‐2‐alkylthio‐6H‐1,3‐thiazines were synthesized by the reaction of S‐alkyl dithiocarbamates and α, β‐unsaturated ketones in the presence of ZrCl4/TMSCl. The procedure is simple and efficient and gives good to high yields of products.  相似文献   

6.
1,3‐Dioxole‐4‐amine derivatives have been prepared efficiently in one‐pot reaction using nanosized SiO2 as a heterogeneous catalyst. The present method does not involve any hazardous organic solvents or catalysts. The high surface‐to‐volume ratio of SiO2 nanoparticle has promising features for the reaction response such as the short reaction time, good to excellent yields, easy of operation and work‐up procedure, and purification of products by non‐chromatographic methods.  相似文献   

7.
In the title compounds, 4‐aminopyridinium 4‐aminobenzoate dihydrate, C7H6NO2·C5H7N2+·2H2O, (I), and 4‐aminopyridinium nicotinate, C5H7N2+·C6H4NO2, (II), the aromatic N atoms of the 4‐aminopyridinium cations are protonated. In (I), the asymmetric unit is composed of two 4‐aminopyridinium cations, two 4‐aminobenzoate anions and four water molecules, and the compound crystallizes in a noncentrosymmetric space group. The two sets of independent molecules of (I) are related by a centre of symmetry which is not part of the space group. In (I), the protonated pyridinium ring H atoms are involved in bifurcated hydrogen bonding with carboxylate O atoms to form an R12(4) ring motif. The water molecules link the ions to form a two‐dimensional network along the (10) plane. In (II), an intramolecular bifurcated hydrogen bond generates an R12(4) ring motif and inter‐ion hydrogen bonding generates an R42(16) ring motif. The packing of adduct (II) is consolidated via N—H...O and N—H...N hydrogen bonds to form a two‐dimensional network along the (10) plane.  相似文献   

8.
We, herein, describe a novel, simple, efficient and one‐pot multi‐component procedure for the synthesis of substituted pyrimido[4,5‐d]pyrimidines via reaction of N,N‐dimethyl‐6‐amino uracil, isothiocyanate and aromatic aldehydes promoted by 7‐aminonaphthalene‐1,3‐disulfonic acid (ANDSA)‐functionalized magnetic Fe3O4@SiO2 in water as solvent and without using any other harmful organic reagents. Compared with other reactions, using these organic–inorganic hybrid heterogeneous catalysts can help us to achieve a green procedure, high catalytic activity, easy recovery with an external magnetic field, and short reaction times.  相似文献   

9.
An efficient method for the synthesis of functionalized 4H‐chromenes via a one‐pot three‐component condensation reaction of a 2‐hydroxybenzaldehyde with an active methylene compound and a carbon‐based nucleophile in the presence of a catalytic amount of ZrOCl2·8H2O in water under thermal condition has been described. High yields, simple work‐up procedure, performing reactions in water and synthesis of complex molecules with a one‐pot procedure are the main advantages of this procedure. In addition, the structure of the product from the condensation of salicylaldehyde, 2‐naphthol, and dimedone was confirmed by X‐ray crystallography.  相似文献   

10.
The compounds poly[di‐μ4‐succinato‐μ2‐1,2‐di‐4‐pyridylethane‐dicopper(II)], [Cu2(C4H4O4)2(C12H12N2)]n, (I), and poly[di‐μ4‐succinato‐μ2‐1,3‐di‐4‐pyridylpropane‐dicopper(II)], [Cu2(C4H4O4)2(C13H14N2)]n, (II), exhibit polymeric structures with the dicopper units doubly bridged by bis‐bidentate succinate groups and crosslinked by the separator bis(pyridyl) molecules. In (I), the molecule exhibits a centre of inversion located midway between the core Cu‐dimer atoms and another that relates half of the bis(pyridyl)ethane ligand to the other half. Compound (II) has a similar molecular packing but with a doubled lattice constant and noncentrosymmetric core units. An antiferromagnetic interaction due to the dinuclear copper units was deduced from magnetic subsceptibility measurements, and spin triplet signals were detected in the electron paramagnetic resonance spectra for both compounds.  相似文献   

11.
The molecule of 3,5‐bis{4‐[(benzimidazol‐1‐yl)methyl]phenyl}‐4H‐1,2,4‐triazol‐4‐amine (L), C30H24N8, has an antiperiplanar conformation of the two terminal benzimidazole groups and forms two‐dimensional networks along the crystallographic b axis via two types of intermolecular hydrogen bonds. However, in catena‐poly[[[dichloridomercury(II)]‐μ‐3,5‐bis{4‐[(benzimidazol‐1‐yl)methyl]phenyl}‐4H‐1,2,4‐triazol‐4‐amine] dichloromethane hemisolvate], {[HgCl2(C30H24N8)]·0.5CH2Cl2}n, synthesized by the combination of L with HgCl2, the L ligand adopts a synperiplanar conformation. The HgII cation lies in a distorted tetrahedral environment, which is defined by two N atoms and two Cl atoms to form a one‐dimensional zigzag chain. These zigzag chains stack via hydrogen bonds which expand the dimensionality of the structure from one to two.  相似文献   

12.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

13.
In the title compound, 4‐(4H‐1,2,4‐triazol‐4‐yl­imino­methyl)­phenol hemi­hydrate, C9H8N4O·0.5H2O or (I)·0.5H2O, mol­ecules of (I) are arranged as layers running along the b axis through intermolecular O—H?N and C—H?O hydrogen bonds. These layers are stabilized by hydrogen‐bonded water mol­ecules to form three‐dimensional networks.  相似文献   

14.
The facile and convenient access by a conventional procedure in ethanol as solvent to a new series of succinyl‐spaced pyrazoles including 1,4‐bis[5‐(trichloromethyl)‐5‐hydroxy‐4,5‐dihydro‐1H‐pyrazol‐1‐yl]butane‐1,4‐diones (64–82%) and the respective dehydrated derivatives as 1,4‐bis[5‐(trichloromethyl)‐1H‐pyrazol‐1‐yl]butane‐1,4‐diones in 57–82% yields, from the regioselective cyclocondensation reactions of 4‐substituted 4‐methoxy‐1,1,1‐trichloroalk‐3‐en‐2‐ones with succinic acid dihydrazide, where the 4‐substituents are Me, Ph, 4‐FC6H4, 4‐ClC6H4, 4‐NO2C6H4, 2‐furyl, and 2‐thienyl, is reported. J. Heterocyclic Chem., 2011.  相似文献   

15.
A palladium‐catalyzed three‐component reaction between N‐tosylhydrazones, 2‐iodoanilines and atmospheric pressure CO2 was developed whereby a tandem carbene migration insertion/lactamization strategy afforded 4‐aryl‐2‐quinolinones in moderate to good yields. Notably, a wide range of functional groups were tolerated in this procedure. This protocol features the simultaneous formation of four novel bonds; two C?C, one C=C and one C?N (amide), representing an efficient methodology for incorporation of CO2 into heterocycles.  相似文献   

16.
The mol­ecule of 3,5‐di­fluoro‐4‐nitro­pyridine N‐oxide, C5H2F2N2O3, is twisted around the C—NO2 bond by 38.5 (1)°, while the 3,5‐di­amino analogue, 3,5‐di­amino‐4‐nitro­pyridine N‐oxide monohydrate, C5H6N4O3·H2O, adopts a planar conformation stabilized by intramolecular hydrogen bonds, with a significant redistribution of π electrons.  相似文献   

17.
The title compounds, C8H10O2, (I), and C12H14O2, (II), occurred as by‐products in the controlled synthesis of a series of bis­(gem‐alkynols), prepared as part of an extensive study of synthon formation in simple gem‐alkynol derivatives. The two 4‐(gem‐alkynol)‐1‐ones crystallize in space group P21/c, (I) with Z′ = 1 and (II) with Z′ = 2. Both structures are dominated by O—H?O=C hydrogen bonds, which form simple chains in the cyclo­hexane derivative, (I), and centrosymmetric dimers, of both symmetry‐independent mol­ecules, in the cyclo­hexa‐2,5‐diene, (II). These strong synthons are further stabilized by C[triple‐bond]C—H?O=C, Cmethylene—H?O(H) and Cmethyl—H?O(H) interactions. The direct intermolecular interactions between donors and acceptors in the gem‐alkynol group, which characterize the bis­(gem‐alkynol) analogues of (I) and (II), are not present in the ketone derivatives studied here.  相似文献   

18.
An eco‐friendly method has been developed for the synthesis of 2‐amino‐4‐(9H‐carbazole‐3‐yl)thiophene‐3‐carbonitriles from preliminary carbazole ( 1 ) through an intermediate of 2‐(1‐(9H‐carbazole‐3‐yl)ethylidene)malononitriles using the Knoevenagel condensation followed by the Gewald reaction. On the other hand, the target compounds could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of 1‐(9H‐carbazole‐3‐yl)ethanone ( 3 ), malononitrile, and elemental sulfur. The merits of this preparation are mild reaction conditions. The Gewald reaction is executed with inorganic base NaHCO3 (H2O) in tetrahydrofuran, easy work‐up procedure with good yields.  相似文献   

19.
The derivatives of pyrimidin‐4‐one can adopt either a 1H‐ or a 3H‐tautomeric form, which affects the hydrogen‐bonding interactions in cocrystals with compounds containing complementary functional groups. In order to study their tautomeric preferences, we crystallized 2,6‐diaminopyrimidin‐4‐one and 2‐amino‐6‐methylpyrimidin‐4‐one. During various crystallization attempts, four structures of 2,6‐diaminopyrimidin‐4‐one were obtained, namely solvent‐free 2,6‐diaminopyrimidin‐4‐one, C4H6N4O, (I), 2,6‐diaminopyrimidin‐4‐one–dimethylformamide–water (3/4/1), C4H6N4O·1.33C3H7NO·0.33H2O, (Ia), 2,6‐diaminopyrimidin‐4‐one dimethylacetamide monosolvate, C4H6N4O·C4H9NO, (Ib), and 2,6‐diaminopyrimidin‐4‐one–N‐methylpyrrolidin‐2‐one (3/2), C4H6N4O·1.5C5H9NO, (Ic). The 2,6‐diaminopyrimidin‐4‐one molecules exist only as 3H‐tautomers. They form ribbons characterized by R22(8) hydrogen‐bonding interactions, which are further connected to form three‐dimensional networks. An intermolecular N—H...N interaction between amine groups is observed only in (I). This might be the reason for the pyramidalization of the amine group. Crystallization experiments on 2‐amino‐6‐methylpyrimidin‐4‐one yielded two isostructural pseudopolymorphs, namely 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–dimethylacetamide (1/1/1), C5H7N3O·C5H7N3O·C4H9NO, (IIa), and 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–N‐methylpyrrolidin‐2‐one (1/1/1), C5H7N3O·C5H7N3O·C5H9NO, (IIb). In both structures, a 1:1 mixture of 1H‐ and 3H‐tautomers is present, which are linked by three hydrogen bonds similar to a Watson–Crick C–G base pair.  相似文献   

20.
Herein, we use a facile procedure to graft a thin graphitic C3N4 (g‐C3N4) layer on aligned TiO2 nanotube arrays (TiNT) by a one‐step chemical vapor deposition (CVD) approach. This provides a platform to enhance the visible‐light response of TiO2 nanotubes for antimicrobial applications. The formed g‐C3N4/TiNT binary nanocomposite exhibits excellent bactericidal efficiency against Escherichia coli (E. coli) as a visible‐light activated antibacterial coating, without the use of additional bactericides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号