首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The wavelength of maximum emission of tryptophan depends on the local electrostatic environment of the indole chromophore. The time-resolved emission spectra of seven rigid cyclic hexapeptides containing a single tryptophan residue were measured. The emission maxima of the three decay-associated spectra for the seven peptides ranged from 341 to 359 nm, suggesting that different tryptophan rotamers have different emission maxima even in the case of solvent-exposed tryptophans. This conclusion is supported by quantum mechanical/molecular dynamics simulations of the six canonical side chain rotamers of tryptophan in solvated hexapeptides. The calculated range of emission maxima for the tryptophan rotamers of the seven peptides is 344-365 nm. The precision of the wavelength calculations and the peptide, water, and charged side chain contributions to the spectral shifts are examined. The results indicate that the emission maxima of decay-associated spectra can aid in the assignment of fluorescence lifetimes to tryptophan rotamers.  相似文献   

2.
Biomolecule conformational change has been widely investigated in solution using several methods; however, much less experimental data about structural changes are available for completely isolated, gas-phase biomolecules. Studies of conformational change in unsolvated biomolecules are required to complement the interpretation of mass spectrometry measurements and in addition, can provide a means to directly test theoretical simulations of biomolecule structure and dynamics independent of a simulated solvent. In this Feature Article, we review our recent introduction of a fluorescence-based method for probing local conformational dynamics in unsolvated biomolecules through interactions of an attached dye with tryptophan (Trp) residues and fields originating on charge sites. Dye-derivatized biomolecule ions are formed by electrospray ionization and are trapped in a variable-temperature quadrupole ion trap in which they are irradiated with either continuous or short pulse lasers to excite fluorescence. Fluorescence is measured as a function of temperature for different charge states. Optical measurements of the dye fluorescence include average intensity changes, changes in the emission spectrum, and time-resolved measurements of the fluorescence decay. These measurements have been applied to the miniprotein, Trp-cage, polyproline peptides and to a beta-hairpin-forming peptide, and the results are presented as examples of the broad applicability and utility of these methods. Model fits to Trp-cage fluorescence data measured as a function of temperature provide quantitative information on the thermodynamics of conformational changes, which are reproduced well by molecular dynamics. Time-resolved measurements of the fluorescence decays of Trp-cage and small polyproline peptides definitively demonstrate the occurrence of fluorescence quenching by the amino acid Trp in unsolvated biomolecules.  相似文献   

3.
The Stokes shift of tryptophan (Trp) fluorescence from layers of the lipid-containing bacteriophage φ6 is compared to determine the relative effect of the layers on virus hydrophobicity. In the inner most layer, the empty procapsid (PC) which contains 80-90% of the virion Trp residues, λ(max) = 339.8 nm. The PC emission is substantially more redshifted than the other φ6 layers and nearer to that of the Pseudomonad host cell than the other φ6 layers. The Trp emission from the nucleocapsid (NC) with λ(max) = 337.4 nm, is blueshifted by 2.4 nm relative to the PC although the number of Trp in the NC is identical to the PC. This shift represents an increase in Trp hydrophobicity, likely a requirement for the maintenance of A-form doubled-stranded RNA. Fluorescence from the completely assembled virion indicates it is in a considerably more hydrophobic environment with λ(max) = 330.9 nm. Density measurements show that the water content in the NC does not change during envelope assembly, therefore the blueshifted φ6 emission suggests that the envelope changes the PC environment, probably via the P8 layer. This change in hydrophobicity likely arises from charge redistribution or envelope-induced structural changes in the PC proteins.  相似文献   

4.
The environment of Trp57, introduced by the mutation of a tyrosine in the dynamic loop of porcine liver fructose-1,6-bisphosphatase (FBPase), was examined using time-resolved fluorescence and directed mutation. The Trp57 enzyme was studied previously by X-ray crystallography and steady-state fluorescence, the latter revealing an unexpected redshift in the wavelength of maximum fluorescence emission for the R-state conformer. The redshift was attributed to the negative charge of Asp127 in contact with the indole side chain of Trp57. Time-resolved fluorescence experiments here reveal an indole side chain less solvent exposed and more rigid in the R-state, than in the T-state of the enzyme, consistent with X-ray crystal structures. Replacement of Asp127 with an asparagine causes a 6 nm blueshift in the wavelength of maximum fluorescence emission for the R-state conformer, with little effect on the emission maximum of the T-state enzyme. The data here support the direct correspondence between X-ray crystal structures of FBPase and conformational states of the enzyme in solution, and provide a clear example of the influence of microenvironment on the fluorescence properties of tryptophan.  相似文献   

5.
There is no satisfactory mechanism to detect premalignant lesions in the upper aero-digestive tract. Fluorescence spectroscopy has potential to bridge the gap between clinical examination and invasive biopsy; however, optimal excitation wavelengths have not yet been determined. The goals of this study were to determine optimal excitation-emission wavelength combinations to discriminate normal and precancerous/cancerous tissue, and estimate the performance of algorithms based on fluorescence. Fluorescence excitation-emission matrices (EEM) were measured in vivo from 62 sites in nine normal volunteers and 11 patients with a known or suspected premalignant or malignant oral cavity lesion. Using these data as a training set, algorithms were developed based on combinations of emission spectra at various excitation wavelengths to determine which excitation wavelengths contained the most diagnostic information. A second validation set of fluorescence EEM was measured in vivo from 281 sites in 56 normal volunteers and three patients with a known or suspected premalignant or malignant oral cavity lesion. Algorithms developed in the training set were applied without change to data from the validation set to obtain an unbiased estimate of algorithm performance. Optimal excitation wavelengths for detection of oral neoplasia were 350, 380 and 400 nm. Using only a single emission wavelength of 472 nm, and 350 and 400 nm excitation, algorithm performance in the training set was 90% sensitivity and 88% specificity and in the validation set was 100% sensitivity, 98% specificity. These results suggest that fluorescence spectroscopy can provide a simple, objective tool to improve in vivo identification of oral cavity neoplasia.  相似文献   

6.
The average fluorescence lifetimes of nine North Sea crude oils with API gravities of between 20 and 51 were measured using a modular, filter based, instrument developed in-house. Two pulsed light emitting diode (LED) excitation sources (460 and 510 nm) were used to excite fluorescence, the lifetime of which was measured at a range of emission wavelengths. Fluorescence lifetimes were found to vary from 1.8 to 8.2 ns with confidence intervals of +/- 0.11 ns. The average lifetimes at all emission wavelengths were linearly correlated with API gravity and with aromatic concentration with the best results being obtained with the 460 nm excitation source. Predictive models with an accuracy of +/- 7.6 API degrees were generated using partial least-squares methods from average fluorescence lifetimes measured at an emission wavelength of 500 nm using 460 nm excitation. A better correlation was found between the aromatic concentration of the oils and the ratio of the average fluorescence lifetimes at measured at 550 and 650 nm using 460 nm excitation. This led to a quantitative model with an accuracy of +/- 5.4% for aromatic concentration.  相似文献   

7.
The amino acid composition of the superoxide dismutase(SOD) from camellia pollen was measured and the tryptophan(Trp) residues were modified by using N-bromosuccinimide(NBS). The results show that there are 21 Trp residues in an SOD molecule and seven of which are located on the surface of the enzyme. By researching the fluorescence spectra of the native SOD and the modified SOD, we have found that the emission wavelength of Trp is at 335 nm and the fluorescence intensity will decrease when the enzyme is modified. The results also show that potassium iodide(KI) can significantly quench the fluorescence of the native SOD, but it has a less pronounced effect on the modified enzyme. Glycerin as a surface activation reagent can stabilize the fluorescence of the modified enzyme.  相似文献   

8.
The impact of photodegradation and mixing processes on the optical properties of dissolved organic matter (DOM) was examined using a distribution of absorption spectral slopes and fluorescence measurements in two Argentine lakes. By examining the variability of the absorption spectral slopes throughout the ultraviolet and visible wavelengths, it was possible to determine which wavelength intervals were most sensitive to dominant loss processes. For DOM photodegradation, results show that increases in the absorption spectral slope between 265 and 305 nm were highly sensitive to increased exposure to solar ultraviolet radiation. A slightly larger wavelength range (265-340 nm) was found to be influenced when both mixing and photodegradation processes were considered, in terms DOM residence time, DOM absorption and UV diffuse attenuation coefficients. This same interval of spectral slopes (265-340 nm) was found to highly correlate with changes in fluorescence emission/excitation in wavelengths that are typically associated with terrestrial humic-like DOM. The identification of specific wavelength intervals, rather than the use of standard wavelength intervals or ratios, improved our ability to identify the dominant dissolved organic matter (humic-like) and major loss mechanisms (photodegradation) in these lakes.  相似文献   

9.
The solvatochromic fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) has been used to study the hydrophobicity and conformational dynamics of lecithin:cholesterol acyltransferase (LCAT). The ANS to LCAT binding constant was estimated from titrations with ANS, keeping a constant concentration of LCAT (2 microM). Apparent binding constant was found to be dependent on the excitation. For the direct excitation of ANS at 375 nm the binding constant was 4.7 microM(-1) and for UV excitation at 295 nm was 3.2 microM(-1). In the later case, not only ANS but also tryptophan (Trp) residues of LCAT is being excited. Fluorescence spectra and intensity decays show an efficient energy transfer from tryptophan residues to ANS. The apparent distance from Trp donor to ANS acceptor, estimated from the changes in donor lifetime was about 3 nm and depends on the ANS concentration. Steady-state and time-resolved fluorescence emission and anisotropies have been characterized. The lifetime of ANS bound to LCAT was above 16 ns which is characteristic for it being in a hydrophobic environment. The ANS labeled LCAT fluorescence anisotropy decay revealed the correlation time of 42 ns with a weak residual motion of 2.8 ns. These characteristics of ANS labeled LCAT fluorescence show that ANS is an excellent probe to study conformational changes of LCAT protein and its interactions with other macromolecules.  相似文献   

10.
铝试剂的荧光光谱与荧光量子产率   总被引:4,自引:0,他引:4  
首次研究了铝试剂的荧光光谱和荧光量子产率,发现pH3至pH12条件下,用紫外光照射铝试剂溶液可以产生荧光,最大激发波长和最大发射波长分别为297nm和409nm,荧光强度与铝试剂浓度之间存在良好的线性关系,线性范围为0.01~3μg/mL,检测下限为0.01μg/mL,以硫酸奎宁为参比,测得铝试剂的荧光量子产率为0.16。  相似文献   

11.
The quantum yield of synthetic eumelanin is known to be extremely low and it has recently been reported to be dependent on excitation wavelength. In this paper, we present quantum yield as a function of excitation wavelength between 250 and 500 nm, showing it to be a factor of 4 higher at 250 nm than at 500 nm. In addition, we present a definitive map of the steady-state fluorescence as a function of excitation and emission wavelengths, and significantly, a three-dimensional map of the "specific quantum yield": the fraction of photons absorbed at each wavelength that are subsequently radiated at each emission wavelength. This map contains clear features, which we attribute to certain structural models, and shows that radiative emission and specific quantum yield are negligible at emission wavelengths outside the range of 585 and 385 nm (2.2 and 3.2 eV), regardless of excitation wavelength. This information is important in the context of understanding melanin biofunctionality, and the quantum molecular biophysics therein.  相似文献   

12.
以径向基网络(RBF)对荧光光谱严重重叠的Al3 、Ga3 I、n3 、Tl3 四组分混合体系同时进行测定。通过正交设计安排样本,在激发波长390 nm下,测定446~615nm的发射光谱。以34个特征波长处的荧光强度值作为网络特征参数,经网络训练和计算得出Al3 、Ga3 、In3 、Tl3 四者的平均回收率分别为99.07%、103.49%、98.72%、95.04%,在时间和精度上都比LMBP网络优越。  相似文献   

13.
Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve the fluorescence spectra of two tryptophan (Trp) residues in alcohol dehydrogenase and lysozyme. In each protein, one Trp residue is buried in a hydrophobic domain of the protein matrix and the other Trp residue is located at a hydrophilic domain close to the protein-water interface. Fluorescence quenching by iodide ion, a hydrophilic quencher, was employed as a perturbation to induce the intensity change in the spectra. The Trp residue which is located at the hydrophilic domain is effectively quenched by the quencher, while the Trp residue located at the hydrophobic domain is protected from the quenching. Therefore, the fluorescence of these two Trp residues have a different sensitivity to the quenching, showing a different response to the concentration of the quencher. Fluorescence spectra of the two Trp residues in alcohol dehydrogenase, which are heavily overlapped in conventional one-dimensional spectra, have been successfully resolved by the 2D correlation technique. From the asynchronous correlation map, it was revealed that the quenching of Trp located at the hydrophobic part was brought about after that of Trp located at the hydrophilic part. In contrast, the fluorescence spectra of the two Trp residues could not be resolved after the alcohol dehydrogenase was denatured with guanidine hydrochloride. These results are consistent with the well-known structure of alcohol dehydrogenase. Furthermore, it was elucidated that the present 2D analysis is not interfered by Raman bands of the solvent, which sometimes bring difficulty into the conventional fluorescence analysis. Fluorescence spectra of the Trp residues in lysozyme could not be resolved by the 2D correlation technique. The differences between the two proteins are attributed to the fact that the Trp residue in the hydrophobic site of lysozyme is not sufficiently protected from the quenching.  相似文献   

14.
New variants of green fluorescent protein (GFP) can be engineered by circular permutation of their amino acid sequence. We characterized a series of permuted enhanced GFP (PEGFP) with new termini introduced at N144-Y145 and linkers of 1, 3, 5 and 6 residues inserted between G232 and M1, as well as a variant with an extended 7-residues linker between K238 and M1. A minimum linker length of 3 residues was necessary for a functional chromophore to be formed, and linkers exceeding 4 residues yielded almost the same fluorescence quantum yield as enhanced GFP (EGFP). PEGFP exhibited dual-wavelength absorption and fluorescence excitation with peaks at 395 and 490 nm but single-wavelength emission at 512 nm. Fluorescence emission increased with increasing pH for all excitation wavelengths with a pKa of 7.7. Between the pH values of 6 and 8 optical absorption showed an isobestic point at 445 nm. PEGFP rapidly denatured in urea between 50 and 60 degrees C. Renaturation proceeded with a short (approximately 29 s) and a longer (> 150 s) time constant. Transient transfection of HEK293 and HeLa cells revealed the expression dynamics of PEGFP to be similar to that of EGFP. Laser-scanning microscopy of HeLa cells demonstrated that the PEGFP are particularly well suited as fluorescent indicators in two-photon imaging.  相似文献   

15.
在pH 9.3的氨-氯化铵缓冲溶液中,铽(Ⅲ)能与依诺沙星、十二烷基硫酸钠(SDS)形成荧光配合物(λex=330 nm、λem=545 nm),SDS的存在能增强配合物的荧光强度。研究发现,在该反应体系中加入适量雷公藤红素溶液后,铽(Ⅲ)与依诺沙星络合物的激发、发射峰位置不变,但其荧光强度呈规律性下降。据此,建立了简单、快速、灵敏地测定雷公藤红素的荧光分析方法。雷公藤红素的浓度在5.2×10-6~8.4×10-5 mol/L范围内呈良好线性关系,方法的检出限为4.1×10-8 mol/L。  相似文献   

16.
Abstract— Besides the normal tryptophan (Trp) fluorescence in aqueous solution (emission maximum at 350 nm), a new emission, peaking around 380 nm, appears by long wavelength excitation. Its fluorescence yield (φs 0.24) is higher than that of tryptophan (φTrp= 0.13). The growth of this emission is observed under different experimental conditions, mainly under UV anaerobic irradiation. To explain this observation, the formation of a C3-hydroxylated derivative is tentatively suggested.  相似文献   

17.
On spectral relaxation in proteins   总被引:5,自引:0,他引:5  
During the past several years there has been debate about the origins of nonexponential intensity decays of intrinsic tryptophan (trp) fluorescence of proteins, especially for single tryptophan proteins (STP). In this review we summarize the data from diverse sources suggesting that time-dependent spectral relaxation is a ubiquitous feature of protein fluorescence. For most proteins, the observations from numerous laboratories have shown that for trp residues in proteins (1) the mean decay times increase with increasing observation wavelength; (2) decay associated spectra generally show longer decay times for the longer wavelength components; and (3) collisional quenching of proteins usually results in emission spectral shifts to shorter wavelengths. Additional evidence for spectral relaxation comes from the time-resolved emission spectra that usually shows time-dependent shifts to longer wavelengths. These overall observations are consistent with spectral relaxation in proteins occurring on a subnanosecond timescale. These results suggest that spectral relaxation is a significant if not dominant source of nonexponential decay in STP, and should be considered in any interpretation of nonexponential decay of intrinsic protein fluorescence.  相似文献   

18.
Protein fluorescence signals essential information about the conformational dynamics of proteins. Different types of intrinsic fluorophores reflect different protein local or global structural changes. Bovine Serum Albumin (BSA) is a transport protein that contains two intrinsic fluorophores: Tryptophan134 (Trp134) and Tryptophan213 (Trp213). This protein displays an interesting temperature dependence of the tryptophan fluorescence. However, the molecular mechanism of the temperature dependence is still unclear. In this work, we propose a generic rotamer model to explain this phenomenon. The model assumes the presence of rotamer-specific fluorescence lifetimes. The fluorescence temperature dependence is caused by the population shifts between different rotamers due to thermal effects. As a proof of concept, we show that the tryptophan's two fluorescence lifetimes (𝜏1 = 0.4–0.5 ns and 𝜏2 = 2-4 ns) are sufficient to qualitatively explain the fluorescence intensity change at different temperatures, both in buffer solution (water) and in the protein. To computationally verify our rotamer hypothesis, we use an all-atom molecular dynamics simulation to study the effects of temperature on the two tryptophans' rotamer dynamics. The simulations show that Trp134 is more sensitive to temperature, consistent with experimental observations. Overall, the results support that the temperature dependence of fluorescence in the protein BSA is due to local conformational changes at the residue level. This work sheds light on the relationship between tryptophan's rotamer dynamics and its ability to fluorescence.  相似文献   

19.
Fluorescence emission after two-photon excitation at 532 nm by means of a Nd : YAG laser is observed in apohemoglobin, hemoglobin, albumin and tryptophan at room temperature. The experimental results show that the fluorescence of these proteins originates from tryptophan residues. No fluorescence of a biphotonic nature could be detected from lysozyme and tyrosine.  相似文献   

20.
Molecular dynamics (MD), coupled with fluorescence data for charged dipeptides of tryptophanyl glutamic acid (Trp‐Glu), reveal a detailed picture of how specific conformation affects fluorescence. Fluorescence emission spectra and time‐resolved emission measurements have been collected for all four charged species. MD simulations 20 to 30 ns in length have also been carried out for the Trp‐Glu species, as simulation provides aqueous phase conformational data that can be correlated with the fluorescence data. The calculations show that each dipeptide species is characterized by a similar set of six, discrete Chi 1, Chi 2 dihedral angle pairs. The preferred Chi 1 angles—60°, 180°, and 300°—play the significant role in positioning the terminal amine relative to the indole ring. A Chi 1 angle of 60° results in the arching of the backbone over the indole ring and no interaction of the ring with the terminal amine. Chi 1 values of 180° and 300° result in an extension of the backbone away from the indole ring and a NH3 cation‐π interaction with indole. This interaction is believed responsible for charge transfer quenching. Two fluorescence lifetimes and their corresponding amplitudes correlate with the Chi 1 angle probability distribution for all four charged Trp‐Glu dipeptides. Fluorescence emission band maxima are also consistent with the proposed pattern of terminal amine cation quenching of fluorescence. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号