首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six new aza crown ethers (4–9) were synthesized based on the conventional route crab‐like method with the reaction of corresponding bis‐α‐chloroacetamidediphenylsulfide (BCADPS) (3) and aliphathic diamines (a–e) in refluxing acetonitrile in good yields. BCADPS (3) was synthesized with the reaction of 2,2′‐diaminodiphenyl sulfide (2) and chloroacetyl chloride. Interestingly, only the macrocyclization of BCADPS (3) with diamine (e) was led to the cryptand (9) in which methylene hydrogens were found as diastereotopic nucleis which is attributed to the rigidity of the cryptand ( 9 ). The formation of this cryptand ( 9 ) may be related the template effect of potassium ion. The structures of all compounds were confirmed using IR, 1H‐NMR, 13C‐NMR, mass spectroscopies, and elemental analysis.  相似文献   

2.
A series of multifunctional 2‐amino‐5‐cyano‐4‐[(2‐aryl)‐1H‐indol‐3‐yl]‐6‐hydroxypyrimidines ( 4a , 4b , 4c , 4d , 4e , 4f ) was synthesized by multicomponent reaction of 3‐formylindole ( 1 ), cyanoethylacetate ( 2 ), and guanidine hydrochloride ( 3 ) with NaOH by using green chemical techniques, viz. microwave irradiation and grindstone technology. The same reactants when refluxed in ethanol also gave titled compounds ( 4a , 4b , 4c , 4d , 4e , 4f ). Compared with conventional procedure, the reaction can be carried out under milder conditions, requiring a shorter reaction time and giving higher yields following the green chemistry methodology. All the synthesized compounds have been characterized on the basis of elemental analyses and spectral data (IR, 1H NMR, 13C NMR, and mass). All synthesized compounds were also evaluated for their antimicrobial activity against nine pathogenic bacteria, antifungal activity against Rhizopus stolonifer, Aspergillus flavus, and Fusarium oxysporum and antibacterial activity against Escherichia coli and Pseudomonas aeruginosa at different concentrations. Most of the compounds showed mild to moderate activity.  相似文献   

3.
The new approach involving the solid supported catalyst for the formation of C–N bond followed by cyclization has been reported. In this work we have reported a facile, efficient, and environment‐friendly protocol for the synthesis of some new 3‐amino‐imidazo[2,1‐b](1,3)benzothiazole derivatives by one‐pot condensation of 2‐aminobenzothiazole, indole‐3‐carbaldehyde, and aryl isocyanide in the presence of silica‐supported P2O5 as a heterogeneous solid acid catalyst. The reaction was performed using conventional method under green conditions. The present approach offers the advantages of simple methodology, inexpensive acid catalyst, short reaction time, easy work up with excellent yield, simple purification and use of green solvent. All the newly synthesized compounds were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR, and FTIR spectroscopy.  相似文献   

4.
A series of new 1,2,3‐triazole derivatives were synthesized by 1,3‐dipolar cycloaddition reaction of 2‐(4‐azidomethylphenyl)‐6‐phenyl‐4H‐pyran‐4‐one with different alkynes in 40–71% yields. In the case of terminal alkynes, the reaction was proceeded in the presence of Cu(I) catalyst. The structure of the synthesized compounds were confirmed by FTIR, 1H‐NMR, and 13C‐NMR spectroscopy and elemental analysis.  相似文献   

5.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

6.
A new nano scale Cu‐MOF has been obtained via post‐synthetic metalation by immersing a Zn‐MOF as a template in DMF solutions of copper(II) salts. The Cu‐MOF serves as recyclable nano‐catalyst for the preparation of 5‐substituted 1H‐tetrazoles via [3 + 2] cycloaddition reaction of various nitriles and sodium azide in a green medium (PEG). The post‐synthetic metalated MOF were characterized by FT‐IR spectroscopy, powder X‐ray diffraction (PXRD), atomic absorption spectroscopy (AAS), and energy dispersive X‐ray spectroscopy (EDX) techniques. The morphology and size of the nano‐catalyst were determined by field emission scanning electron microscopy (FE‐SEM).  相似文献   

7.
In this research, in order to synthesize a series of ethyl 2‐amino‐4‐benzoyl‐5‐oxo‐5,6‐dihydro‐4H‐pyrano[3,2‐c]quinoline‐3‐carboxylates, a green and an efficient method is proposed through one‐pot three‐component reaction of substituted arylglyoxals, ethyl cyanoacetate, and 4‐hydroxyquinolin‐2(1H)‐one in the presence of terapropylammonium bromide as a catalyst in good yields. All synthesized new substances were characterized by FTIR, 1H‐NMR, and 13C‐NMR spectral data and elemental analysis.  相似文献   

8.
Chloro, fluoro, and nitro derivatives of 7‐amino‐5‐aryl‐6‐cyano‐5H‐pyrano pyrimidin‐2,4‐diones were produced by reacting malononitrile, barbituric acid, and aromatic aldehydes together with a DABCO catalyst in an aqueous one‐pot reaction. This is the first report of these compounds being synthesized with DABCO as a catalyst, which produced the compounds in yields in excess of 90%. The 2,4‐difluoro derivative ( 11 ) was novel. The structures of the synthesized compounds were elucidated by means of 1H, 13C, and 2D NMR spectroscopy. Compound 2 (2‐Cl derivative) had MBC values of <200μM against both Staphylococcus aureus and MRSA, and the 2‐nitro derivative 5 had an MBC of 191μM against the Gram–ve Escherichia coli. The synthesized compounds were also tested for their anticancer activity against a HeLa cell line, where all the compounds showed better activity (IC50 values between 129μM and 340μM) than 5‐fluorouracil, a commonly known anticancer drug.  相似文献   

9.
A nanosilica (derived from rice husk)‐anchored Pd(II)–Schiff base complex has been synthesized and characterized. This immobilized complex has been found to be a very effective and recyclable heterogeneous catalyst for the Suzuki–Miyaura cross‐coupling reaction of various aryl halides with arylboronic acid in aqueous medium under mild conditions. The products were identified using 1H NMR and mass spectral studies. This complex can be easily filtered out from the reaction medium and reused up to six times without significant loss of catalytic activity. Since the reaction proceeds under mild conditions in aqueous medium as well as the catalyst being recyclable, it provides an environmentally benign alternative route to the existing protocols for the Suzuki–Miyaura reaction.  相似文献   

10.
A novel method is reported for the synthesis of benzoxanthenone and 3‐pyranylindole derivatives via one‐pot three‐component reactions using a newly synthesized HAp‐encapsulated γ‐Fe2O3‐supported dual acidic heterogeneous catalyst, as a reusable and highly efficient nanocatalyst. In this protocol the use of the nanocatalyst provided a green, useful and rapid method to generate products in short reaction times (4–20 min) and in excellent yields (87–96%). The paramagnetic nature of the catalyst provided a simple, trouble‐free and facile approach for the separation of the catalyst by applying an external magnet, and it could be used in eight cycles without significant loss in catalytic efficiency.  相似文献   

11.
The present work describes the use of Pd(0)‐ S‐propyl‐2‐aminobenzothioate Complex immobilized onto functionalized magnetic nanoporous MCM‐41(Fe3O4@MCM‐41@Pd‐SPATB) as efficient and recyclable nano‐organometallic catalyst for C–C bond formation between various aryl halides with phenylboronic acid (Suzuki reaction), aryl halides with triphenyltin chloride (Stille reaction), and aryl halides with n‐butyl acrylate (Heck reaction). All the reactions were carried out in PEG‐400 as green solvent with short reaction time and good to excellent yields. This catalyst was characterized by FT‐IR spectroscopy, XRD, TGA, VSM, ICP‐OES, TEM, EDX and SEM techniques. Ease of operation, high efficiency, recovery and reusability for five continuous cycles without significant loss of its catalytic activities or metal leaching are the noteworthy features of the currently employed heterogeneous catalytic system.  相似文献   

12.
The nonlinear optical property of new polyester has been studied via second harmonic generation (SHG). The values of electro‐optic coefficients, d33 and d31, of the poled polymer film were 3.15 × 10 ?7 and 1.5 × 10?7 esu, respectively. Thermal behavior of this polyester was studied through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 4‐di‐(2′‐hydroxyethoxy)‐4‐diphenyl‐hydrazonomethyl was synthesized from the reaction of 3,4‐dihydroxy‐4‐diphenyl‐hydrazonomethyl with 2–chloro–1‐ethanol in a 1:2 mole ratio and subsequently reacted with terephthaloyl chloride (TPC) in the presence of pyridine, as catalyst, to produce the new nonlinear polyester. The chemical structures of the resulting monomers and polymer were characterized by CHN analysis, 1H‐NMR, FT‐IR, and UV–Vis spectroscopy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
One pot green synthesis of 1‐(1,2,4‐triazol‐4‐yl)spiro[azetidine‐2,3′‐(3H)‐indole]‐2′,4′(1′H)‐diones was carried out by the reaction of indole‐2,3‐diones,4‐amino‐4H‐1,2,4‐triazole and acetyl chloride/chloroacetyl chloride in ionic liquid [bmim]PF6 with/without using a catalyst. It was also prepared by conventional method via Schiff's bases, 3‐[4H‐1,2,4‐triazol‐4‐yl]imino‐indol‐2‐one. Further, the corresponding phenoxy derivatives were obtained by the reaction of chloro group attached to azetidine ring with phenols. The synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and FAB mass) data. Evaluation for insecticidal activity against Periplaneta americana exhibited promising results.  相似文献   

14.
A novel magnetic hybrid system containing nano‐magnetic Fe2O3 hollow spheres, silica shell, [pmim]Cl ionic liquid and silver nanoparticles was synthesized and characterized. The silver nanoparticles were prepared via biosynthesis using Achillea millefolium flower as reducing and stabilizing agent. The hybrid system was successfully used as an efficient and reusable catalyst for promoting green ultrasonic‐assisted A3 and KA2 coupling reactions as well as benzo[b]furan synthesis. It was found that decoration of the magnetic core with non‐magnetic moieties decreased the maximum saturation magnetization. However, the catalyst was still superparamagnetic and could be simply separated from the reaction mixture using an external magnet. The heterogeneous nature of the catalyst was also confirmed by studying its reusability and stability and the leaching of silver. Use of aqueous media, high yields, short reaction times, broad substrate tolerance and low required amount of catalyst are the merits of this protocol.  相似文献   

15.
2‐Amino‐4‐(4‐substitutedphenyl)‐5‐oxo‐4H,5H‐pyrano[2,3‐d]pyrido[1,2‐a]pyrimidine‐3‐carbonitrile‐derivatives 2–12 were synthesized via multi‐component condensation reactions of different aromatic aldehydes, 3H‐pyrido[1,2‐a]pyrimidine‐2,4‐dione 1 , and malononitrile by using ZnO nanoparticles as green chemistry, environmentally friendly catalyst under solvent‐free conditions. The present work creates a variety of biologically active heterocyclic compounds in excellent yield and a short time. The structures of all synthesized compounds were elucidated with the elemental analyses, IR, 1H NMR, and mass spectral data.  相似文献   

16.
A simple, green and efficient protocol for the one‐pot four‐component synthesis of pyrano[2,3‐c ]pyrazole derivatives produced from reaction between aryl aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of nano magnetic piperidinium benzene‐1,3‐disulfonate was synthesized in water at 60 °C. The Fe3O4@SiO2 nanoparticle‐supported IL was designed and synthesized. The present process offers advantages such as clean reaction, short reaction time, good to excellent yield, easy purification and easy recoverable catalyst.  相似文献   

17.
We have developed green, efficient and powerful protocols for the preparation of 2,4,6‐triarylpyridines and 1,8‐dioxodecahydroacridines in the presence of Fe3O4@TiO2@O2PO2(CH2)2NHSO3H as a sulfonic acid‐functionalized titana‐coated magnetic nanoparticle catalyst under mild and solvent‐free reaction conditions. These protocols furnished the desired products in short reaction times with good to high yields (20–40 min and 80–86% in the case of 2,4,6‐triarylpyridines; 15–90 min and 80–93% in the case of 1,8‐dioxodecahydroacridines). The final step of the mechanistic route in the synthesis of 2,4,6‐triarylpyridines proceeds via an anomeric‐based oxidation. Also, the nanomagnetic core–shell catalyst can be recycled and reused in both cases of the scrutinized one‐pot multicomponent reactions with high turnover number and turnover frequency.  相似文献   

18.
An efficient nano ZnO catalyzed green protocol for the synthesis of pyrazol derivatives by condensation of different substituted phenyl hydrazines/semicarbazide/thiosemicarbazide with 1,3‐diketone/ketoester at ambient temperature has been achieved. ZnO nanocatalyst was prepared by low temperature solution combustion method. From the Scherrer method the crystallite size of ZnO was estimated and found to be in the range of 30–50 nm. The main advantage of this protocol is an excellent yield, short reaction time and easy work up procedure. The catalyst was found to be reusable up to five catalytic cycles without any appreciable loss in activity of the catalyst.  相似文献   

19.
A new, green and reusable nanomagnetic heterogeneous catalyst, namely Fe3O4@TiO2@O2PO2(CH2)NHSO3H, was synthesized and fully characterized using suitable techniques such as infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, vibrating sample magnetometry and energy‐dispersive X‐ray spectroscopy. The applicability of the constructed heterogeneous core–shell catalyst as a promoter was successfully explored for the synthesis of 2‐amino‐4,6‐diphenylnicotinonitrile derivatives upon the reaction of a good range of aromatic aldehydes, acetophenone derivatives, malononitrile and ammonium acetate. The desired products were obtained with good to high yields in short reaction times under solvent‐free conditions. The suggested mechanism offers an anomeric‐based oxidation route to the products in the final step of the synthetic pathway.  相似文献   

20.
Poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV) with a molar mass of 26–47 × 104 g mol?1 and a polydispersity of 2.5–3.2 was synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran (THF) containing 1,4‐bis(chloromethyl)‐2‐methoxy‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 0.5 mm. The reaction was carried out at a low temperature of 0 °C and under nitrogen protection. No gelation was observed during the polymerization process, and the polymer was soluble in the usual organic solvents, such as chloroform, toluene, THF, and xylene. A polymer light‐emitting diode was fabricated with MEH‐PPV as an active luminescent layer. The device had an indium tin oxide/poly(3,4‐ethylenedioxylthiophene) (PEDOT)/MEH‐PPV/Ba/Al configuration. It showed a turn‐on voltage of 3.3 V, a luminescence intensity at 6.1 V of 550 cd/m2, a luminescence efficiency of 0.43 cd/A, and a quantum efficiency of 0.57%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3049–3054, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号