首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Here we report a new chiral stationary phase (CSP) immobilized on silica gel based on cone calix[4]arene functionalized at the upper rim with two l ‐alanine units as new chiral selector that has been used in high‐performance liquid chromatography. The CSP was prepared by covalently bonding the allyl groups at the lower rim of calix[4]arene to silica gel by thiol‐ene click chemistry reaction. Elemental analysis of the CSP showed that 120 μmol of chiral selector bonded per gram of silica gel. 1‐Hexene was used for end‐capping of unreacted mercapto groups on silica gel. Since the CSP is chemically bonded to the silica, it can be used in the normal‐phase and reversed‐phase mode and with halogenated solvents as mobile phases, if desired. The chromatographic performance of the CSP was evaluated in the enantioseparation of the 3,5‐dinitrobenzoyl derivatives of some amino acids, diclofop‐methyl and dl ‐mandelic acid.  相似文献   

2.
Two new kinds of alanine‐substituted calix[4]arene stationary phases of 5,11,17,23‐p‐tert‐butyl‐25,27‐bis(l ‐alanine‐methylester‐N‐carbonyl‐methoxy)‐26,28‐dihyroxycalix[4]arene‐bonded silica gel stationary phase (BABS4) and 5, 11, 17, 23‐p‐tert‐butyl‐25,26,27,28‐tetra(l ‐alanine‐methylester‐N‐carbonyl‐methoxy)‐calix[4]arene‐bonded silica gel stationary phase (TABS4) were prepared and characterized in the present study. They were compared with each other and investigated in terms of their chromatographic performance by using polycyclic aromatic hydrocarbons, disubstituted benzene isomers, and mono‐substituted benzenes as solute probes. The results indicated that both BABS4 and TABS4 exhibited multiple interactions with analytes. In addition, the commonly used Tanaka characterization protocol for the evaluation of commercially available stationary phases was applied to evaluate the properties of these two new functionalized calixarene stationary phases. The Tanaka test results were compared with Zorbax Eclipse XDB C18 and Kromasil phenyl columns, respectively. BABS4 has stronger hydrogen‐bonding capacity and ion‐exchange capacity than TABS4, and features weaker hydrophobicity and hydrophobic selectivity. Both of them behave similarly in stereoselectivity. Both BABS4 and TABS4 are weaker than C18 and phenyl stationary phases in hydrophobicity and hydrophobic selectivity.  相似文献   

3.
A silica‐based chiral stationary phase (CSP) derived from L‐α‐norleucinyl‐ and pyrrolidinyl‐disubstituted cyanuric chloride was prepared for the enantioseparation of methyl esters of N‐(3,5‐dinitrobenzoyl) amino acids by high‐performance liquid chromatography. The chromatographic results show that effective enantioseparation of methyl esters of N‐(3,5‐dinitrobenzoyl)amino acids, except for proline, was achieved on this chiral stationary phase. The chromatographic resolution of racemic n‐propyl ester of N‐(3,5‐dinitrobenzoyl)valine on CSP‐B is better than that of racemic methyl ester of N‐(3,5‐dinitrobenzoyl)valine on CSP‐B or CSP‐A reported previously (J. Chromatogr. A, 676 (1994) 303). The comparison of the chromatographic results obtained in this study with those on CSP‐A reported previously reveals that steric effect, instead of hydrophobic interaction, between the n‐butyl group attached to the chiral center of the chiral selector and the alkyl group attached to the chiral center of the chiral selectand plays a significant role in chiral discrimination. The increase in the selectivity factor of methyl esters of N‐(3,5‐dinitrobenzoyl)amino acids with bulky alkyl groups was examined on CSP‐B.  相似文献   

4.
In this study, a series of chiral stationary phases based on N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine amide, whose enantiorecognition property has never been studied, were synthesized. Their enantioseparation abilities were chromatographically evaluated by 67 enantiomers. The chiral stationary phase derived from N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine showed much better enantioselectivities than that based on N‐(4‐methylbenzoyl)‐l ‐leucine amide. The construction of C2 symmetric chiral structure greatly improved the enantiorecognition performance of the stationary phase. The C2 symmetric chiral stationary phase exhibited superior enantioresolutions to other chiral stationary phases for most of the chiral analytes, especially for the chiral analytes with C2 symmetric structures. By comparing the enantioseparations of the enantiomers with similar structures, the importance of hydrogen bond interaction, π–π interaction, and steric hindrance on enantiorecognition was elucidated. The enantiorecognition mechanism of transN,N′‐(1,2‐diphenyl‐1,2‐ethanediyl)bis‐acetamide, which had an excellent separation factor on the C2 symmetric chiral stationary phase, was investigated by 1H‐NMR spectroscopy and 2D 1H‐1H nuclear overhauser enhancement spectroscopy.  相似文献   

5.
A new reciprocal π‐basic chiral stationary phase (CSP) was designed based on the reciprocity conception of chiral recognition and prepared starting from (S)‐leucine. The CSP thus prepared was applied in resolving various π‐acidic N‐(3,5‐dinitrobenzoyl)‐α‐amino amides and esters and found to be very effective. Especially, N‐(3,5‐dinitrobenzoyl)‐α‐amino N,N‐dialkyl amides were resolved very well on the new reciprocal CSP. From the chromatographic resolution results and based on the reciprocity conception of chiral recognition with the aid of Corey/Pauling/Koltan (CPK) molecular model studies, a chiral recognition mechanism which utilizes π‐π interaction and simultaneously two hydrogen bonding interactions between the CSP and the analyte has been proposed. The CSP prepared in this study was also successful in resolving 3,5‐dinitrophenylcarbamate derivatives of 2‐hydroxycarboxylic acid esters.  相似文献   

6.
A new water‐soluble tetra‐proline‐modified calix[4]arene‐bonded silica stationary phase was prepared straightforwardly by an indirect method and characterized by elemental analysis, energy dispersive Spectrometry, solid‐state 13C NMR spectroscopy, Fourier‐transform infrared spectroscopy, and thermogravimetric analysis. Due to the simultaneous introduction of polar tetra‐proline and nonpolar calix[4]arene, the developed column possessing a double retention mode of reverse‐phase liquid chromatography and hydrophilic interaction liquid chromatography. A series of hydrophobic and hydrophilic test samples, including nucleosides and nucleotides, amines, monosubstituted benzenes, chiral compounds, and phenols, were used to evaluate the developed stationary phase. A rapid separation capability, high separation efficiency, and selectivity were achieved based on the multiple interactions between solutes and tetra‐proline‐modified calix[4]arene‐bonded silica stationary phase. Moreover, the developed stationary phase was further used to detect and separate hexamethylenetetramine in rice flour. All the results indicated the potential merits of the developed stationary phase for simultaneous separation of complex hydrophobic and hydrophilic samples with high selectivity.  相似文献   

7.
(S)‐N‐(3,5‐dinitrobenzoyl)leucine‐N‐phenyl‐N‐propylamine‐bonded silica was used as a chiral stationary phase for separation of a set of racemic π‐acidic and π‐basic α‐amino acid amides in electrolyteless ACN‐water eluents by CEC in the RP and polar organic (PO) modes. The effect of the amount of water in the ACN‐water eluent on chiral separation was examined. As water is added to ACN, retention was shortened but resolution and selectivity deteriorated severely. Retention, enantioselectivity, and resolution factors obtained in 100% ACN were compared with those in an n‐hexane‐isopropanol eluent with a small amount of water by normal phase (NP) CEC. Much shorter retention times with comparable enantioselectivities were observed with 100% ACN, demonstrating the advantage of separation on (S)‐N‐(DNB)leucine‐N‐phenyl‐N‐propylamine‐bonded silica in PO‐CEC over NP‐CEC.  相似文献   

8.
Bromoacetate‐substituted [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy]propylsilyl‐appended silica particles (BACD‐HPS), an important and useful synthetic intermediate for preparation of novel types of macrocycles‐capped β‐CD‐bonded silica particles including crown ether/cyclam/calix[4]arene‐capped β‐CD‐bonded silica particles, have been prepared and used as chiral stationary phase for HPLC. This synthetic stationary phase is characterized by means of elemental analysis. For the first time, the chromatographic behavior of BACD‐HPS was systematically evaluated with several disubstituted benzenes and some chiral drug compounds under both normal and RP conditions in HPLC. The results show that BACD‐HPS has excellent selectivity for the separation of aromatic positional isomers and chiral isomers of some drug compounds when used as stationary phase in HPLC.  相似文献   

9.
3‐Phenyllactic acid is an antimicrobial compound with broad‐spectrum activity against various bacteria and fungus. The observed difference in pharmacological activity between optical isomeric 3‐phenyllactic acid necessitates a method for enantioseparation. Chiral ligand exchange countercurrent chromatography was investigated for the enantioseparation of 3‐phenyllactic acid with a synthesized chiral ligand. A two‐phase solvent system was composed of n‐butanol/hexane/water (0.4:0.6:1, v/v/v) to which Nn‐dodecyl‐l ‐hydroxyproline was added to the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transitional metal ion. The influence factors were optimized by enantioselective liquid–liquid extraction. Baseline enantioseparation of racemic 3‐phenyllactic acid by analytical high‐speed countercurrent chromatography was achieved. The optical purities of enantiomeric 3‐phenyllactic acid reached 99.0%, as determined by chiral high‐performance liquid chromatography.  相似文献   

10.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

11.
With a variation in reaction conditions, 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐calix[6]arene (3) and l,3,5‐tris(2‐(2‐chloroethoxy) ethoxy)‐calix [6] arene (4) or 4 and 4‐chloroethoxyethoxy‐calix[6]crown‐3 (5) were selectively synthesized from p‐tert‐butyl‐calix [6] arene and 2‐(2‐chloroethoxy)ethyltosylate. l,3–4,6‐p‐tert‐butylcalix[6]‐bis‐crown‐3 (6) with (u,u,u,d,d,d) conformation and 1,3–4,5‐p‐tert‐butylcalix[6]‐biscrown‐3 (7) with self‐anchored (u,u, u, u, u, d) conformation were synthesized through an intramolecularly ring‐closing condensation of 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐p‐tert‐butyl‐calix[6]arene (3) in 25% and 15% yield, respectively. Using 5 instead of 3, only 7 was obtained in 65% high yield. 6 and 7 show different complexation properties toward alkali metal and ammonium ions.  相似文献   

12.
A quinine‐derived chiral anion‐exchange stationary phase was used for the direct high‐performance liquid chromatographic separation of the enantiomers of the N‐protected unusual β‐substituted α‐amino acids, β‐methylphenylalanine, β‐methyltyrosine, β‐methyltryptophan, and β‐methyl‐1,2,3,4‐tetrahydroisoquinoline‐3‐carboxylic acid. The readily prepared 2,4‐dinitrophenyl and tert‐butyloxycarbonyl derivatives were well separated, and in most cases the separation of all four stereoisomers of these β‐methyl‐α‐amino acids could be obtained in one chromatographic run. The elution sequences of the enantiomers of the different derivatives were determined and revealed a dependence on the type of the N‐protecting group. In this context, the effects of different protecting groups (acetyl, tert‐butyloxycarbonyl, benzoyl, 3,5‐dinitrobenzoyl, benzyloxycarbonyl, 3,5‐dinitrobenzyloxycarbonyl, 2,4‐dinitrophenyl, and 9‐fluorenylmethoxycarbonyl) on the chromatographic behavior were investigated.  相似文献   

13.
A series of polycyclic aromatic hydrocarbons (PAHs) of different size and shape has been used to characterize the chromatographic behavior of five calix[4]arene stationary phases in 1,3‐alternate conformation synthesized in our laboratory. The selection of linear, four‐ring nonlinear, and five‐ring PAHs gave data on selectivity changes across range of the calix[4]arene columns. Retention of the 12 aromatic solutes has been evaluated at various methanol contents in the mobile phase (70–100% v/v) and column temperatures (20–45°C). The thermodynamic parameters underlying the retention mechanisms revealed that each of the five calix[4]arene columns exhibited variation in selectivity and retention of PAHs caused by enthalpy and entropy effects. The calixarene stationary phases substituted with electron‐withdrawing groups exhibit enhanced selectivity toward PAHs in comparison to the rest of the investigated columns. The observed divergences are due to differences in solute–stationary phase interactions and originate in π–π and π‐electron transfer specific to the analytes and the type of calix[4]arene functionalization at the upper rim, as well as steric and sorption phenomena.  相似文献   

14.
Retention and enantioseparation behavior of ten 2,2′‐disubstituted or 2,3,2′‐trisubstituted 1,1′‐binaphthyls and 8,3′‐disubstituted 1,2′‐binaphthyls, which are used as catalysts in asymmetric synthesis, was investigated on eight chiral stationary phases (CSPs) based on β‐CD, polysaccharides (tris(3,5‐dimethylphenylcarbamate) cellulose or amylose CSPs) and new synthetic polymers (trans‐1,2‐diamino‐cyclohexane, trans‐1,2‐diphenylethylenediamine and trans‐9,10‐dihydro‐9,10‐ethanoanthracene‐(11S,12S)‐11,12‐dicarboxylic acid CSPs). Normal‐, reversed‐phase and polar‐organic separation modes were employed. The effect of the mobile phase composition was examined. The enantiomeric separation of binaphthyl derivatives, which possess quite similar structures, was possible in different enantioselective environments. The substituents and their positions on the binaphthyl skeleton affect their properties and, as a consequence, the separation system suitable for their enantioseparation. In general, the presence of ionizable groups on the binaphthyl skeleton, substitution with non‐identical groups and a chiral axis in the 1,2′ position had the greatest impact on the enantiomeric discrimination. The 8,3′‐disubstituted 1,2′‐binaphthyl derivatives were the most easily separated compounds in several separation systems. From all the chiral stationary phases tested, cellulose‐based columns were shown to be the most convenient for enantioseparation of the studied analytes. However, the polymeric CSPs with their complementary behavior provided good enantioselective environments for some derivatives that could be hardly separated in any other chromatographic system.  相似文献   

15.
A new stationary phase for high‐performance liquid chromatography was prepared by covalently bonding a heteroatom‐bridged cyclophane onto silica gel using 3‐aminopropyltriethoxysilane as the coupling reagent. The structure of the new material was characterized by infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The linear solvation energy relationship method was successfully employed to evaluate the new phase with a set of 25 solutes, and compared with octadecylsilyl and ptert‐butyl‐calix[4]arene bonded stationary phases. The retention characteristics of the new phase are similar to the octadecylsilyl and conventional calixarene phases, and it also has distinctive features. In addition, the chromatographic behavior of the phase was illustrated by eluting alkylbenzenes and inorganic anions in the reversed‐phase mode and anion‐exchange mode, respectively. Thus, multi‐interaction mechanisms and mixed‐mode separation of the new phase can very likely guarantee its promising application in the analysis of complex samples. The column has been successfully employed for the analysis of triazines in milk, and it is demonstrated to be a competitive alternative analytical method for the determination of triazine herbicide residues.  相似文献   

16.
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1‐alkyl‐3‐methylimidazolium L ‐proline (L ‐Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers—dl ‐phenylalanine (dl ‐Phe), dl ‐histidine (dl ‐His), dl ‐tryptophane (dl ‐Trp), and dl ‐tyrosine (dl ‐Tyr)—were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (Rs)=3.26–10.81 for HPLC; Rs=1.34–4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L ‐Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L ‐Pro are consequently attached to the support surface, thus inducing an ion‐exchange type of retention for the dl ‐enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand‐exchange‐based chiral separation. It also reveals the tremendous application potential of this new type of task‐specific ILs.  相似文献   

17.
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl ‐phenylalanine; dl ‐tryptophan) using β‐Cyclodextrin and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β‐CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β‐CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA‐I, 18AA‐II and 3AA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A kind of N‐substituted maleimide (RMI), chiral (S)‐N‐maleoyl‐L ‐leucine propargyl ester ((S)‐PLMI) with a specific rotation of [α]435 = ?27.5° was successfully synthesized from maleic anhydride, L ‐leucine, and propargyl alcohol. (S)‐PLMI was polymerized by three polymerization methods to obtain the corresponding optically active polymers. Asymmetric anionic, radical, and transition‐metal‐catalyzed polymerizations were carried out using organometal/chiral ligands, 2,2′‐azobisisobutyronitrile (AIBN) and (bicyclo [2,2,1]hepta‐2,5‐diene) chloro rhodium (I) dimer ([Rh(nbd) Cl]2), respectively. Poly((S)‐PLMI) obtained by [Rh(nbd)Cl]2 in DMF showed the highest specific rotation of ?280.6°. Chiroptical properties and structures of the polymers obtained were investigated by GPC, CD, IR, and NMR measurements. Two types of poly((S)‐PLMI)‐bonded‐silica gels as the chiral stationary phase (CSP) were prepared for high‐performance liquid chromatography (HPLC). Their optical resolution abilities were also elucidated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3722–3738, 2007  相似文献   

19.
The resolving power of a new commercial polysaccharide‐based chiral stationary phase, Sepapak‐4, with cellulose tris(4‐chloro‐3‐methylphenylcarbamate) coated on silica microparticles as chiral selector, was evaluated toward the enantioseparation of ten basic drugs with widely different structures and hydrophobic properties, using ACN as the main component of the mobile phase. A multivariate approach (experimental design) was used to screen the factors (temperature, n‐hexane content, acidic and basic additives) likely to influence enantioresolution. Then, the optimization was performed using a face‐centered central composite design. Complete enantioseparation could be obtained for almost all tested chiral compounds, demonstrating the high chiral discrimination ability of this chiral stationary phase using polar organic mobile phases made up of ACN and containing an acidic additive (TFA or formic acid), 0.1% diethylamine and n‐hexane. These results clearly illustrate the key role of the nature of the acidic additive in the mobile phase.  相似文献   

20.
Highly N‐deacetylated chitosan was chosen as a natural chiral origin for the synthesis of the selectors of chiral stationary phases. Therefore, chitosan was firstly acylated by various alkyl chloroformates yielding chitosan alkoxyformamides, and then these resulting products were further derivatized with 4‐methylphenyl isocyanate to afford chitosan bis(4‐methylphenylcarbamate)‐(alkoxyformamide). A series of chiral stationary phases was prepared by coating these derivatives on 3‐aminopropyl silica gel. The content of the derivatives on the chiral stationary phases was nearly 20% by weight. The chiral stationary phases prepared from chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(isopropoxyformamide) comparatively showed better enantioseparation capability than those prepared from chitosan bis(4‐methylphenylcarbamate)‐(n‐pentoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(benzoxyformamide). The tolerance against organic solvents of the chiral stationary phase of chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) was investigated, and the results revealed that this phase can work in 100% ethyl acetate and 100% chloroform mobile phases. Because as‐synthesized chiral selectors did not dissolve in many common organic solvents, the corresponding chiral stationary phases can be utilized in a wider range of mobile phases in comparison with conventional coating type chiral stationary phases of cellulose and amylose derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号