首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

2.
Let \(\mathcal{H}\) be an infinite dimensional complex Hilbert space and \(\mathcal{A}\) be a standard operator algebra on \(\mathcal{H}\) which is closed under the adjoint operation. It is shown that each nonlinear *-Lie-type derivation δ on \(\mathcal{A}\) is a linear *-derivation. Moreover, δ is an inner *-derivation as well.  相似文献   

3.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

4.
In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.  相似文献   

5.
For P ? \(\mathbb{F}_2 \)[z] with P(0) = 1 and deg(P) ≥ 1, let \(\mathcal{A}\) = \(\mathcal{A}\)(P) (cf. [4], [5], [13]) be the unique subset of ? such that Σ n≥0 p(\(\mathcal{A}\), n)z n P(z) (mod 2), where p(\(\mathcal{A}\), n) is the number of partitions of n with parts in \(\mathcal{A}\). Let p be an odd prime and P ? \(\mathbb{F}_2 \)[z] be some irreducible polynomial of order p, i.e., p is the smallest positive integer such that P(z) divides 1 + z p in \(\mathbb{F}_2 \)[z]. In this paper, we prove that if m is an odd positive integer, the elements of \(\mathcal{A}\) = \(\mathcal{A}\)(P) of the form 2 k m are determined by the 2-adic expansion of some root of a polynomial with integer coefficients. This extends a result of F. Ben Saïd and J.-L. Nicolas [6] to all primes p.  相似文献   

6.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

7.
Let k be a commutative ring, \(\mathcal {A}\) and \(\mathcal {B}\) – two k-linear categories with an action of a group G. We introduce the notion of a standard G-equivalence from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\), where \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) is the homotopy category of finitely generated projective \(\mathcal {A}\)-complexes. We construct a map from the set of standard G-equivalences to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) and a map from the set of standard G-equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {B}/G)\) to \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {A}/G)\), where \(\mathcal {A}/G\) denotes the orbit category. We investigate the properties of these maps and apply our results to the case where \(\mathcal {A}=\mathcal {B}=R\) is a Frobenius k-algebra and G is the cyclic group generated by its Nakayama automorphism ν. We apply this technique to obtain the generating set of the derived Picard group of a Frobenius Nakayama algebra over an algebraically closed field.  相似文献   

8.
For the extended Dirichlet space \(\mathcal {F}_{e}\) of a general irreducible recurrent regular Dirichlet form \((\mathcal {E},\mathcal {F})\) on L 2(E;m), we consider the family \(\mathbb {G}(\mathcal {E})=\{X_{u};u\in \mathcal {F}_{e}\}\) of centered Gaussian random variables defined on a probability space \(({\Omega }, \mathcal {B}, \mathbb {P})\) indexed by the elements of \(\mathcal {F}_{e}\) and possessing the Dirichlet form \(\mathcal {E}\) as its covariance. We formulate the Markov property of the Gaussian field \(\mathbb {G}(\mathcal {E})\) by associating with each set A ? E the sub-σ-field σ(A) of \(\mathcal {B}\) generated by X u for every \(u\in \mathcal {F}_{e}\) whose spectrum s(u) is contained in A. Under a mild absolute continuity condition on the transition function of the Hunt process associated with \((\mathcal {E}, \mathcal {F})\), we prove the equivalence of the Markov property of \(\mathbb {G}(\mathcal {E})\) and the local property of \((\mathcal {E},\mathcal {F})\). One of the key ingredients in the proof is in that we construct potentials of finite signed measures of zero total mass and show that, for any Borel set B with m(B) >?0, any function \(u\in \mathcal {F}_{e}\) with s(u) ? B can be approximated by a sequence of potentials of measures supported by B.  相似文献   

9.
Friedrich Wehrung 《Order》2018,35(1):111-132
A partial lattice P is ideal-projective, with respect to a class \(\mathcal {C}\) of lattices, if for every \(K\in \mathcal {C}\) and every homomorphism φ of partial lattices from P to the ideal lattice of K, there are arbitrarily large choice functions f:PK for φ that are also homomorphisms of partial lattices. This extends the traditional concept of (sharp) transferability of a lattice with respect to \(\mathcal {C}\). We prove the following: (1) A finite lattice P, belonging to a variety \(\mathcal {V}\), is sharply transferable with respect to \(\mathcal {V}\) iff it is projective with respect to \(\mathcal {V}\) and weakly distributive lattice homomorphisms, iff it is ideal-projective with respect to \(\mathcal {V}\), (2) Every finite distributive lattice is sharply transferable with respect to the class \(\mathcal {R}_{\text {mod}}\) of all relatively complemented modular lattices, (3) The gluing D 4 of two squares, the top of one being identified with the bottom of the other one, is sharply transferable with respect to a variety \(\mathcal {V}\) iff \(\mathcal {V}\) is contained in the variety \(\mathcal {M}_{\omega }\) generated by all lattices of length 2, (4) D 4 is projective, but not ideal-projective, with respect to \(\mathcal {R}_{\text {mod}}\) , (5) D 4 is transferable, but not sharply transferable, with respect to the variety \(\mathcal {M}\) of all modular lattices. This solves a 1978 problem of G. Grätzer, (6) We construct a modular lattice whose canonical embedding into its ideal lattice is not pure. This solves a 1974 problem of E. Nelson.  相似文献   

10.
We define NLC\(_k^{\mathcal{F}}\) to be the restriction of the class of graphs NLC k , where relabelling functions are exclusively taken from a set \(\mathcal{F}\) of functions from {1,...,k} into {1,...,k}. We characterize the sets of functions \(\mathcal{F}\) for which NLC\(_k^{\mathcal{F}}\) is well-quasi-ordered by the induced subgraph relation ≤? i . Precisely, these sets \(\mathcal{F}\) are those which satisfy that for every \(f,g\in \mathcal{F}\), we have Im(f?°?g)?=?Im(f) or Im(g?°?f)?=?Im(g). To obtain this, we show that words (or trees) on \(\mathcal{F}\) are well-quasi-ordered by a relation slightly more constrained than the usual subword (or subtree) relation. A class of graphs is n-well-quasi-ordered if the collection of its vertex-labellings into n colors forms a well-quasi-order under ≤? i , where ≤? i respects labels. Pouzet (C R Acad Sci, Paris Sér A–B 274:1677–1680, 1972) conjectured that a 2-well-quasi-ordered class closed under induced subgraph is in fact n-well-quasi-ordered for every n. A possible approach would be to characterize the 2-well-quasi-ordered classes of graphs. In this respect, we conjecture that such a class is always included in some well-quasi-ordered NLC\(_k^{\mathcal{F}}\) for some family \(\mathcal{F}\). This would imply Pouzet’s conjecture.  相似文献   

11.
This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves \(\mathcal {E}\) of arbitrary high rank on a general standard (resp. linear) determinantal scheme \(X\subset \mathbb {P}^{n}\) of codimension c ≥ 1, n ? c ≥ 1 and defined by the maximal minors of a t × (t + c?1) homogeneous matrix \(\mathcal {A}\). The sheaves \(\mathcal {E}\) are constructed as iterated extensions of sheaves of lower rank. As applications: (1) we prove that any general standard determinantal scheme \(X\subset \mathbb {P}^{n}\) is of wild representation type provided the degrees of the entries of the matrix \(\mathcal {A}\) satisfy some weak numerical assumptions; and (2) we determine values of t, n and n ? c for which a linear standard determinantal scheme \(X\subset \mathbb {P}^{n}\) is of wild representation type with respect to the much more restrictive category of its indecomposable Ulrich sheaves, i.e. X is of Ulrich wild representation type.  相似文献   

12.
Each saturated (resp., Arf) numerical semigroup S has the property that each of its fractions \(\frac{S}{k}\) is saturated (resp., Arf), but the property of being of maximal embedding dimension (MED) is not stable under formation of fractions. If S is a numerical semigroup, then S is MED (resp., Arf; resp., saturated) if and only if, for each 2≤k∈?, \(S = \frac{T}{k}\) for infinitely many MED (resp., Arf; resp., saturated) numerical semigroups T. Let \(\mathcal{A}\) (resp., \(\mathcal{F}\)) be the class of Arf numerical semigroups (resp., of numerical semigroups each of whose fractions is of maximal embedding dimension). Then there exists an infinite strictly ascending chain \(\mathcal{A} =\mathcal{C}_{1} \subset\mathcal{C}_{2} \subset\mathcal{C}_{3}\subset \,\cdots\, \subset\mathcal{F}\), where, like \(\mathcal{A}\) and \(\mathcal{F}\), each \(\mathcal{C}_{n}\) is stable under the formation of fractions.  相似文献   

13.
We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.  相似文献   

14.
Let \(\mathcal {F}_{0}=\{f_{i}\}_{i\in \mathbb {I}_{n_{0}}}\) be a finite sequence of vectors in \(\mathbb {C}^{d}\) and let \(\mathbf {a}=(a_{i})_{i\in \mathbb {I}_{k}}\) be a finite sequence of positive numbers, where \(\mathbb {I}_{n}=\{1,\ldots , n\}\) for \(n\in \mathbb {N}\). We consider the completions of \(\mathcal {F}_{0}\) of the form \(\mathcal {F}=(\mathcal {F}_{0},\mathcal {G})\) obtained by appending a sequence \(\mathcal {G}=\{g_{i}\}_{i\in \mathbb {I}_{k}}\) of vectors in \(\mathbb {C}^{d}\) such that ∥g i 2 = a i for \(i\in \mathbb {I}_{k}\), and endow the set of completions with the metric \(d(\mathcal {F},\tilde {\mathcal {F}}) =\max \{ \,\|g_{i}-\tilde {g}_{i}\|: \ i\in \mathbb {I}_{k}\}\) where \(\tilde {\mathcal {F}}=(\mathcal {F}_{0},\,\tilde {\mathcal {G}})\). In this context we show that local minimizers on the set of completions of a convex potential P φ , induced by a strictly convex function φ, are also global minimizers. In case that φ(x) = x 2 then P φ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD.  相似文献   

15.
In this paper, by using the “twisting technique” we obtain a class of new modules A b over the Witt algebras \(\mathcal {W}_{n}\) from modules A over the Weyl algebras \(\mathcal {K}_{n}\) (of Laurent polynomials) for any \(b\in \mathbb {C}\). We give necessary and sufficient conditions for A b to be irreducible, and determine necessary and sufficient conditions for two such irreducible \(\mathcal {W}_{n}\)-modules to be isomorphic. Since \(\mathfrak {sl}_{n+1}(\mathbb {C})\) is a subalgebra of \(\mathcal {W}_{n}\), all the above irreducible \(\mathcal {W}_{n}\)-modules A b can be considered as \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules. For a class of such \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules, denoted by Ω1?a (λ 1, λ 2, ? ,λ n ) where \(a\in \mathbb {C}, \lambda _{1},\lambda _{2},\cdots ,\lambda _{n} \in \mathbb {C}^{*}\), we determine necessary and sufficient conditions for these \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules to be irreducible. If the \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-module Ω1?a (λ 1, λ 2,? ,λ n ) is reducible, we prove that it has a unique nontrivial submodule W 1?a (λ 1, λ 2,...λ n ) and the quotient module is the finite dimensional \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-module with highest weight mΛ n for some non-negative integer \(m\in \mathbb {Z}_{+}\). We also determine necessary and sufficient conditions for two \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules of the form Ω1?a (λ 1, λ 2,? ,λ n ) or of the form W 1?a (λ 1, λ 2,...λ n ) to be isomorphic.  相似文献   

16.
Let \(\mathcal {A}\) be a Hom-finite additive Krull-Schmidt k-category where k is an algebraically closed field. Let \(\text {mod}\mathcal {A}\) denote the category of locally finite dimensional \(\mathcal {A}\)-modules, that is, the category of covariant functors \(\mathcal {A} \to \text {mod}k\). We prove that an irreducible monomorphism in \(\text {mod}\mathcal {A}\) has a finitely generated cokernel, and that an irreducible epimorphism in \(\text {mod}\mathcal {A}\) has a finitely co-generated kernel. Using this, we get that an almost split sequence in \(\text {mod}\mathcal {A}\) has to start with a finitely co-presented module and end with a finitely presented one. Finally, we apply our results to the study of rep(Q), the category of locally finite dimensional representations of a strongly locally finite quiver. We describe all possible shapes of the Auslander-Reiten quiver of rep(Q).  相似文献   

17.
For any positive integer n, let \(\sigma (\mathrm{n})\) and p(n) denote the sum of divisors and the least prime divisor of n respectively. Let a, b be positive integers. In this paper we prove the following two results: (i) If 4 | a and \(\gcd (a, b)=1\), then a and b do not satisfy \(\sigma (a)= \sigma (b)=a+b\). (ii) If \(a>10^{8}\) and \(p(a)>2\log _{2}a+1\), where \(\log _{2}{a}\) is the logarithm of a with base 2, then a and b do not satisfy \(\sigma (a)=\sigma (b)=a+b+\lambda \), where \(\lambda \in \{0,\pm 1\}\).  相似文献   

18.
We study packing problems with matroid structures, which includes the strength of a graph of Cunningham and scheduling problems. If \(\mathcal {M}\) is a matroid over a set of elements S with independent set \(\mathcal {I}\), and \(m=|S|\), we suppose that we are given an oracle function that takes an independent set \(A\in \mathcal {I}\) and an element \(e\in S\) and determines if \(A\cup \{e\}\) is independent in time I(m). Also, given that the elements of A are represented in an ordered way \(A=\{A_1,\dots ,A_k\}\), we denote the time to check if \(A\cup \{e\}\notin \mathcal {I}\) and if so, to find the minimum \(i\in \{0,\dots ,k\}\) such that \(\{A_1,\dots ,A_i\}\cup \{e\}\notin \mathcal {I}\) by \(I^*(m)\). Then, we describe a new FPTAS that computes for any \(\varepsilon >0\) and for any matroid \(\mathcal {M}\) of rank r over a set S of m elements, in memory space O(m), the packing \(\varLambda ({\mathcal {M}})\) within \(1+\varepsilon \) in time \(O(mI^*(m)\log (m)\log (m/r)/\varepsilon ^2)\), and the covering \(\varUpsilon ({\mathcal {M}})\) in time \(O(r\varUpsilon ({\mathcal {M}})I(m)\log (m)\log (m/r)/\varepsilon ^2)\). This method outperforms in time complexity by a factor of \(\varOmega (m/r)\) the FPTAS of Plotkin, Shmoys, and Tardos, and a factor of \(\varOmega (m)\) the FPTAS of Garg and Konemann. On top of the value of the packing and the covering, our algorithm exhibits a combinatorial object that proves the approximation. The applications of this result include graph partitioning, minimum cuts, VLSI computing, job scheduling and others.  相似文献   

19.
We show that symmetric block designs \({\mathcal {D}}=({\mathcal {P}},{\mathcal {B}})\) can be embedded in a suitable commutative group \({\mathfrak {G}}_{\mathcal {D}}\) in such a way that the sum of the elements in each block is zero, whereas the only Steiner triple systems with this property are the point-line designs of \({\mathrm {PG}}(d,2)\) and \({\mathrm {AG}}(d,3)\). In both cases, the blocks can be characterized as the only k-subsets of \(\mathcal {P}\) whose elements sum to zero. It follows that the group of automorphisms of any such design \(\mathcal {D}\) is the group of automorphisms of \({\mathfrak {G}}_\mathcal {D}\) that leave \(\mathcal {P}\) invariant. In some special cases, the group \({\mathfrak {G}}_\mathcal {D}\) can be determined uniquely by the parameters of \(\mathcal {D}\). For instance, if \(\mathcal {D}\) is a 2-\((v,k,\lambda )\) symmetric design of prime order p not dividing k, then \({\mathfrak {G}}_\mathcal {D}\) is (essentially) isomorphic to \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\), and the embedding of the design in the group can be described explicitly. Moreover, in this case, the blocks of \(\mathcal {B}\) can be characterized also as the v intersections of \(\mathcal {P}\) with v suitable hyperplanes of \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\).  相似文献   

20.
Let Q0 be the classical generalized quadrangle of order q = 2n(n≥2) arising from a non-degenerate quadratic form in a 5-dimensional vector space defined over a finite field of order q. We consider the rank two geometry \(\mathcal {X}\) having as points all the elliptic ovoids of Q0 and as lines the maximal pencils of elliptic ovoids of Q0 pairwise tangent at the same point. We first prove that \(\mathcal {X}\) is isomorphic to a 2-fold quotient of the affine generalized quadrangle Q?Q0, where Q is the classical (q,q2)-generalized quadrangle admitting Q0 as a hyperplane. Further, we classify the cliques in the collinearity graph Γ of \(\mathcal {X}\). We prove that any maximal clique in Γ is either a line of \(\mathcal {X}\) or it consists of 6 or 4 points of \(\mathcal {X}\) not contained in any line of \(\mathcal {X}\), accordingly as n is odd or even. We count the number of cliques of each type and show that those cliques which are not contained in lines of \(\mathcal {X}\) arise as subgeometries of Q defined over \(\mathbb {F}_{2}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号