首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高琪  朱小芹  翟良君 《化学通报》2019,82(12):1093-1097
以氯化铜为前躯体,葡糖糖为还原剂,烷基胺(十六胺和十八胺的混合物)为络合剂和表面包覆剂,经过络合反应和溶剂热两步反应首先得到形貌均一、直径约为100 nm的铜纳米颗粒, 随后自发生长为五重孪晶铜纳米棒(仍含有部分颗粒)。实验过程中分别对溶剂热反应1 h、3 h和5 h后的还原产物的形貌特征加以表征,可以推断被还原的铜原子首先均匀成核形成初级铜纳米颗粒,经过奥斯特瓦尔德老化过程生长为五重孪晶的次级铜纳米颗粒,由于孪晶结构具有很高的生长活性,在烷基胺的表面包覆作用下生长为各项异性的铜纳米棒。该方法提供了一种有效的铜纳米棒的制备方法并且降低了一维铜纳米材料的合成成本。  相似文献   

2.
We describe a remarkable and simple alloying procedure in which noble metal intermetallic nanoparticles are produced in gram quantities via digestive ripening. This process involves mixing of separately prepared colloids of pure Au and pure Ag or Cu particles and then heating in the presence of an alkanethiol under reflux. The result after 1 h is alloy nanoparticles. Particles synthesized according to this procedure were characterized by UV-vis spectroscopy, EDX analysis, and high-resolution electron microscopy, the results of which confirm the formation of alloy particles. The particles of 5.6+/-0.5 nm diameter for Au/Ag and 4.8+/-1.0 nm diameter for Cu/Au undergo facile self-assembly to form 3-D superlattice ordering. It appears that during this digestive ripening process, the organic ligands display an extraordinary chemistry in which atom transfer between atomically pure copper, silver, and gold metal nanoparticles yields monodisperse alloy nanoparticles.  相似文献   

3.
Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO?∶?Cu = 2 and 5 are synthesized by reduction of the metal-organic Cu precursor [Cu{(OCH(CH(3))CH(2)N(CH(3))(2))}(2)] in the presence of stearate@ZnO nanoparticles. In the case of ZnO?∶?Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 3-5 nm sized stearate@ZnO particles. For ZnO?∶?Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (20-50 nm) decorated by small ZnO nanoparticles (3-5 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.  相似文献   

4.
Room-temperature sulfidation of 100 nm-sized copper nanoparticles with powderous elemental sulfur in chloroform results in fast formation of irregular nanostructured CuS (covellite) particles containing nanoplates. These were characterized by Raman and UV-Vis spectroscopy, X-ray diffraction and scanning and transmission electron microscopy. The reaction is judged to occur via breakdown of the Cu nanoparticles by reactively interacting sulfur solutes and via growth of the CuS nanobodies involving interdiffusion and redox reaction of S and Cu atoms.  相似文献   

5.
两种晶型酞菁氧钒纳米颗粒的制备及形成机理   总被引:4,自引:0,他引:4  
在水溶液中利用激光消融制备了酞菁氧钒(VOPc)相I型纳米颗粒,在加入一种非离子型表面活性剂的情况下通过激光消融制备得到了其相II型纳米颗粒.X射线衍射(XRD)、紫外可见吸收光谱(UV-Vis)和傅立叶变换红外光谱(FT-IR)表征了其纳米颗粒中的晶体结构.扫描电子显微镜(SEM)观察显示相I和相II型酞菁氧钒纳米颗粒的直径分别约为100和60 nm.对相II型酞菁氧钒纳米颗粒的形成机理进行了讨论.  相似文献   

6.
A new and simple method has been developed to synthesize large quantities of highly monodisperse tetragonal zirconia nanocrystals. In this synthesis, a nonhydrolytic sol-gel reaction between zirconium(IV) isopropoxide and zirconium(IV) chloride at 340 degrees C generated 4 nm sized zirconia nanoparticles. A high-resolution transmission electron microscopic (HRTEM) image showed that the particles have a uniform particle size distribution and that they are highly crystalline. These monodisperse nanoparticles were synthesized without any size selection process. X-ray diffraction studies combined with Rietveld refinement revealed that the ZrO(2) nanocrystals are the high-temperature tetragonal phase, and very close to a cubic phase. When zirconium(IV) bromide is used as a precursor instead of zirconium chloride, zirconia nanoparticles with an average size of 2.9 nm were obtained. The UV-visible absorption spectrum of 4 nm sized zirconia nanoparticles exhibited a strong absorption starting at around 270 nm. A fluorescence spectrum with excitation at 300 nm showed a broad fluorescence band centered around 370 nm. FTIR spectra showed indication of TOPO binding on the ZrO(2) nanoparticle surface. These optical studies also suggest that the nanoparticles are of high quality in terms of narrow particle size distribution and relatively low density of surface trap states.  相似文献   

7.
Ultrathin (4-6 nm) single-crystal Bi(2)Se(3) nanodiscs and nanosheets were synthesized through a simple and quick solution process. The growth mechanism was investigated in detail. Crystal seeds grew via 2D self-attachment of small nanoparticles followed by epitaxial recrystallization into single crystals. The lateral dimension of the nanodiscs increased and their shape changed from circles to hexagons as the reaction temperature increased. Positively charged polymer surfactants greatly enlarged the lateral dimension to produce nanosheets with uniform thickness.  相似文献   

8.
The mechanistic aspects of the formation of sulfobetaine-stabilized copper nanoparticles were investigated by using in situ XANES (X-ray absorption near edge structure), UV-vis spectroscopy, and reaction calorimetry. The tetracoordinated sulfobetaine-Cu(II) complex was reduced to a stable sulfobetaine-Cu(I) complex prior to the formation of sulfobetaine-stabilized copper nanoparticles. The stability of the Cu(I) complex was found to be sensitive to the concentration of the sulfobetaine stabilizer and the addition rate of the reducing agent. It appears to exist primarily as a linear complex. A tetracoordinated Cu(I) complex as an intermediate has also been postulated. Based on the understanding from these investigations, a microfluidic process for copper nanoparticle synthesis was designed by using sulfobetaine-Cu(I) complex as the starting material. When compared with the copper nanoparticles synthesized by a conventional batch process, the microfluidic reactor process provided particles with a smaller size and narrower size distribution. The copper nanoparticles from the microreactor process could also be more easily purified and the particles were relatively stable in air. Both XRD and SAED indicated that the Cu nanoparticles synthesized have fcc structure.  相似文献   

9.
Stable hydrosols of copper sulfide nanoparticles are synthesized by heating aqueous solutions with different ratios of sodium thiosulfate and copper sulfate in the presence of polyvinylpyrrolidone and studied by a number of physicochemical methods in situ (optical spectroscopy, dynamic light scattering) and ex situ (transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy). The main product is CuS covellite nanoparticles with some impurities of other phases (Cu2S, Cu1,8S, Cu7S4). With an increase in the initial molar ratio S2O 2?3 / Cu from 0.2 to 5 the nanoparticle size increases from 1-5 nm to 30-50 nm and then decreases to 4 nm at a ratio of 10. A substantial increase in the intensity of plasmon absorption within 800-1500 nm is observed during the formation of planar nanoparticles with a lateral size of about 30 nm at S2O 2?3:Cu = 5. A band gap obtained from both direct and indirect optical absorption spectra of sulfides (2.6 eV and 1.7 eV respectively) remains constant for all particles.  相似文献   

10.
The biological dye, naphthol blue black B (NBBB) was found to produce a sensitive reaction with copper(II) at pH over 7. This reaction was very interesting. The complexation of Cu(II) with NBBB happened at pH between 6 and 11 but the redox catalytic reaction happened at pH over 11, where copper(II) served as a catalyst. In this study, ordinary spectrophotometry was limited for use because of the serious interference of excess reactant. A new method, Β-correction principle, was applied because it can eliminate the above interference. This method can give the simple determination of properties of Cu-NBBB complex solution at pH 9.5, which involved the complex ratio, real molar absorptivity, and stability constant (K). Results showed that the formed Cu-NBBB complex occurred as Cu(NBBB) at pH 9.5, its real rather than apparent absorptivity was equal to 7.62 x 103 L mol-1 cm-1 at 630 nm, and its stability constant was 1.32 x 106. The redox catalytic reaction between Cu(II) and NBBB at pH 13 was used to determine trace amounts of copper in water. This reaction was very sensitive and highly selective. Most of the metals did not interfere with the direct determination of copper. The detection limit of copper was 0.002 mg/L, and the recovery was between 90 and 104% with the relative standard deviation of less than 11%. This article was submitted by the author in English.  相似文献   

11.
A simple hydrothermal process has been developed for the synthesis and assembly of copper and silver nanoparticles to aggregates. The reduction of Cu2+ and Ag+ ions to the zerovalent metal was performed by glyoxal in the absence of any external agent. The produced glyoxylic acid (GA) in the redox process stabi‐ lized metallic copper and silver particles and rendered them oxidation resistant for several months and dispersible in polar organic solvents and water. Detailed nanostructures of synthesized products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). The results demonstrated that assembly of nanoparticles to aggregates and their regularity were dependent on the reaction conditions such as temperature and concentration of the starting material. The Ostwald ripening process was proposed to explain the formation of copper nanoparticles by TEM observation at several times during the reaction. The existence of the surface stabilizing agent was identified by Fourier Transform infrared spectroscopy (FT‐IR) and thermogravimetric analyses (TGA).  相似文献   

12.
Copper nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. Oxidation of the SMAD prepared copper colloids resulted in Cu@Cu(2)O core shell structures (7.7 +/- 1.8 nm) or Cu(2)O nanoparticles depending on the reaction conditions. The nano Cu, Cu@Cu(2)O core shell, and Cu(2)O particles were found to be catalytically active for the generation of hydrogen from ammonia-borane either via hydrolysis or methanolysis reaction.  相似文献   

13.
This paper presents studies about the molecular interactions and redox processes involved in the formation of palladium nanoparticles associated to glucose oxidase (GOx-PdNPs) in a supramolecular arrangement. The synthesis occurs in two steps, the Pd reduction and the formation of the 80 nm sized supramolecular aggregates containing multiples units of GOx associated to 3.5 nm sized PdNPs. During synthesis, GOx molecules interact with Pd salt leading to metal ion and FAD reduction probably via the thiol group of the cysteine 521 residue. For the growing of PdNPs, formic acid was necessary as a co-adjuvant reducing agent. Besides the contribution for the redox processes, GOx is also necessary for the NP stability preventing the formation of precipitates resulted from uncontrolled growing of NPs Cyclic voltammetry of the GOx-PdNPs demonstrated electroactivity of the bionanocomposite immobilized on ITO (indium-tin oxide) electrode surface and also the NP is partially blocked due to strong interaction GOx and the surface of PdNPs. Vibrational spectroscopy (FTIR) showed that significant structural changes occurred in GOx after the association to PdNP. These mechanistics and structural studies can contribute for modulation of bionanocomposites properties.  相似文献   

14.
The crystallization of copper sulfide in aqueous supersaturated solutions in the presence of the polymer poly(ethylene oxide), PEO, and the surfactant sodium dodecyl sulfate, SDS, was investigated. In these systems, copper sulfide precipitation competes with the reaction between copper cations and dodecyl sulfate anions. The competition of the two reactions may affect the reaction products significantly; therefore it is important to study the properties of the surfactant salt, copper dodecyl sulfate (Cu(DS)2), in detail. The thermodynamic solubility constant of Cu(DS)2 was measured at 8 degrees C and was equal to (2.4 +/- 0.4) x 10(-10) M3. The Krafft point of Cu(DS)2 and its solubility curve (precipitation temperature for a range of concentrations) were also measured. The latter was found to be very close to room temperature. Temperature is thus a very significant parameter in these systems and must be carefully controlled in all experiments. The crystallization of copper sulfide in PEO-SDS solutions was investigated in solutions with compositions above and below the solubility curve. Copper sulfide nanoparticles predominate and are stabilized at temperatures above the solubility curve. Surprisingly, at temperatures below the solubility curve CuxS coexists with Cu(DS)2, which appears in the form of lamellar crystals. The system is further complicated by the presence of at least two different types of copper sulfides corresponding to different oxidation states of copper. Our results suggest that the predominance of Cu(DS)2 at lower temperatures is due to its limited solubility and is modified by the CuI/CuII redox equilibrium in combination with the solution pH.  相似文献   

15.
Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl)phosphonium acetate, [P(8 8 8 12)][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using (13)C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)(2) in 1-ethyl-3-methylimidazolium acetate, [C(2)mim][OAc], crystals were obtained that revealed the structure of [C(2)mim][Cu(3)(OAc)(5)(OH)(2)(H(2)O)]·H(2)O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry.  相似文献   

16.
Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a microreactor. This series included both non biologically relevant (pyridine, bipyridine, neocuproine, terpyridine, dimethylpyridine, ammonia, ethylenediamine, and 1,10-phenanthroline) and biologically relevant (histidine, glycine, and imidazole) ligands. It was found that when water is present as solvent, gas bubbles are formed under the influence of the X-ray beam. At the liquid-gas interface of these bubbles, in particular cases colloidal copper nanoparticles are formed. This reduction process was found to be influenced by the type of copper precursor salt (SO(4)(2-), NO(3)(-), and Cl(-)), the ligands surrounding the copper cation, and the redox potential of the copper complexes (ranging between +594 and -360 mV). In other words, in some cases, no reduction was encountered (e.g., ammonia in the presence of SO(4)(2-) and NO(3)(-)), whereas in other cases reduction to either Cu(+) (neocuproine with SO(4)(2-)) or Cu(0) (e.g., histidine and imidazole both with SO(4)(2-), NO(3)(-), and Cl(-)) was observed. These results illustrate the added value of video spectroscopy for the interpretation of in situ XANES studies. Not only do the results give an illustration of the parameters that are important in the redox processes that occur in biological systems, they also show the potential problems associated with studying catalytic processes in aqueous solutions by XANES spectroscopy.  相似文献   

17.
In this report is discussed a novel, easy, and general synthesis method to prepare zerovalent iron (ZVI) and copper (ZV Cu) nanoparticles (NPs), from colloid dispersions in an environmental friendly organic solvent, ethylene glycol (EG). Conventional metallic salts are used as nanoparticle precursors; sodium borohydride (NaBH4) is the reducing agent, and triethylamine (TEA) is used as the nanoparticle stabilizer. The chemical changes take place instantaneously under normal reaction conditions. Small iron (alpha-Fe0 phase) and copper (fcc phase) NPs with average diameters of 10.2 +/- 3.3 and 9.5 +/- 2.5 nm, respectively, were obtained. In both cases, the experimental evidence reveals the absence of any metal oxide shell coating the particle surfaces, and their powders remain stable, under aerobic conditions at least for 3 weeks. ZVI NPs were characterized by X-RD, M?ssbauer, and Raman spectroscopies and by EELS coupled to HR-TEM. Otherwise, copper NPs were characterized by X-RD, Z-contrast, and HR-TEM. This synthesis pathway is particularly suitable for large-scale and high-quality zerovalent metallic nanoparticle (ZV M NP) production due to its simple process and low cost.  相似文献   

18.
A simple method has been developed to synthesize Cu/Pd nanoparticles in aqueous solution in ambient condition with the addition of complexing agent, trisodium citrate. UV-vis spectra confirmed the complexing behavior of trisodium citrate and metal ions. The particles synthesized with trisodium citrate were well dispersed with particle size ranging between 3-4 nm while the particles without trisodium citrate were larger and aggregated, as demonstrated by transmission electron microscopy (TEM). X-ray diffraction patterns (XRD) indicated the formation of bimetallic nanoparticles without impurities in the complexing agent-supplemented system. In contrast, large amounts of PdO and Cu(OH)(2) were precipitated along with the formation of particles in the complexing agent-free system. X-ray photoelectron spectroscopy (XPS) revealed small amounts of oxidized Pd on the surface of particles and the existence of zerovalent Cu and oxidized Cu in particles with trisodium citrate. With a simpler process for electroless copper deposition, the Cu/Pd nanoparticle activator with less Pd metal used exhibited comparable catalytic activity to conventional Pd/Sn colloidal activator. In summary, application of Cu/Pd nanoparticles synthesized with the complexing agent as an activator suggested a novel, simpler and inexpensive process in PCB industry.  相似文献   

19.
We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93° to 149°. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180°.  相似文献   

20.
When water is heated and pressurized above the critical point, it becomes a suitable solvent to employ organic capping ligands to control and stabilize the synthesis of nanocrystals. Without alkanethiol ligands, Cu(NO(3))(2) hydrolyzes to form polydisperse copper(II) oxide particles with diameters from 10 to 35 nm. However, in the presence of 1-hexanethiol, X-ray photoelectron spectroscopy, selected area electron diffraction, and transmission electron microscopy reveal the formation of copper nanocrystals approximately 7 nm in diameter. The use of a different precursor, Cu(CH(3)COO)(2), leads to particles with significantly different morphologies. A mechanism is proposed for sterically stabilized nanocrystal growth in supercritical water that describes competing pathways of hydrolysis to large oxidized copper particles versus ligand exchange and arrested growth by thiols to produce small monodisperse Cu nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号