首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laser flash photolysis-resonance fluorescence technique has been employed to determine absolute rate coefficients for the CH3F + Cl reaction in N2 bath gas in the temperature range of 200-700 K and pressure range of 33-133 hPa. The data were fitted to a modified Arrhenius expression k(T) = 1.14 x 10(-12) x (T/298)2.26 exp{-313/T}. The OH and Cl reaction rates of (13)CH3F and CD3F have been measured by long-path FTIR spectroscopy relative to CH3F at 298 +/- 2 K and 1013 +/- 10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least-squares spectral fitting method including line data from the HITRAN database and measured infrared spectra as references. The relative reaction rates defined by alpha = k(light)/k(heavy) were determined to be k(OH+CH3F)/k(OH+CD3F) = 4.067 +/- 0.018, k(OH+CH3F)/k(OH+(13)CH3F) = 1.067 +/- 0.006, k(Cl+CH3F)/k(Cl+CD3F) = 5.11 +/- 0.07, and k(Cl+CH3F)/k(Cl+(13)CH3F) = 1.016 +/- 0.006. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3F have been further investigated by quantum chemistry methods and variational transition state theory.  相似文献   

2.
The kinetics of the OH radical and Cl atom reactions with nine fluorinated ethers have been studied by the relative rate method at 298 K and 1013 hPa using gas chromatography-mass spectroscopy (GC-MS) detection: k(OH + CH3CH2OCF3) = (1.55 +/- 0.25) x 10(-13), k(OH + CF3CH2OCH3) = (5.7 +/- 0.8) x 10(-13),k(OH + CF3CH2OCHF2) = (9.1 +/- 1.1) x 10(-15), k(OH + CF3CHFOCHF2) = (6.5 +/- 0.8) x 10(-15), k(OH + CHF2CHFOCF3) = (6.8 +/- 1.1) x 10(-15), k(OH + CF3CHFOCF3) < 1 x 10(-15), k(OH + CF3CHFCF2OCHF2) = (1.69 +/- 0.26) x 10(-14), k(OH + CF3CHFCF2OCH2CH3) = (1.47 +/- 0.13) x 10(-13), k(OH + CF3CF2CF2OCHFCF3) < 1 x 10(-15), k(Cl + CH3CH2OCF3) = (2.2 +/- 0.8) x 10(-12), k(Cl + CF3CH2OCH3) = (1.8 +/- 0.9) x 10(-11), k(Cl + CF3CH2OCHF2) = (1.5 +/- 0.4) x 10(-14), k(Cl + CF3CHFOCHF2) = (1.1 +/- 1.9) x 10(-15), k(Cl + CHF2CHFOCF3) = (1.2 +/- 2.0) x 10(-15), k(Cl + CF3CHFOCF3) < 3 x 10(-15), k(Cl + CF3CHFCF2OCHF2) < 6 x 10(-16), k(Cl + CF3CHFCF2OCH2CH3) = (3.1 +/- 1.1) x 10(-12), and k(Cl + CF3CF2CF2OCHFCF3) < 3 x 10(-15) cm3 molecule(-1) s(-1). The error limits include three standard deviations (3 sigma) from the statistical data analyses, as well as the errors in the rate coefficients of the reference compounds that are used. Infrared absorption cross sections and estimates of the trophospheric lifetimes and the global warming potentials of the fluorinated ethers are presented. The atmospheric degradation of the compounds is discussed.  相似文献   

3.
Relative rate experiments have been carried out for three isotopologues of chloromethane and their reactions with Cl atoms and OH radicals. The OH and Cl reaction rates of CH2DCl and CHD2Cl were measured by long-path FTIR spectroscopy relative to CH3Cl at 298+/-2 K and 1013+/-10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least squares spectral fitting method including measured high-resolution infrared spectra as references. The relative reaction rates defined by alpha=klight/kheavy were determined to be kOH+CH3Cl/kOH+CH2DCl=1.41+/-0.05, kOH+CH3Cl/kOH+CHD2Cl=2.03+/-0.05, kCl+CH3Cl/kCl+CH2DCl=1.42+/-0.04, and kCl+CH3Cl/kCl+CHD2Cl=2.27+/-0.04. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3Cl were investigated further using variational transition state theory, and the results were compared to similar calculations performed for the CH4+OH/Cl reaction systems. The calculations show that the order of magnitude difference for the carbon-13 kinetic isotope effect in the OH reaction of CH3Cl compared to CH4 reported by Gola et al. (Atmos. Chem. Phys. 2005, 5, 2395) can be explained by the lower barrier to internal rotation of the OH radical in the transition state of the CH4+OH reaction than in the CH3Cl+OH reaction. The deuterium kinetic isotope effects can be explained in terms of combined variational effects and tunneling.  相似文献   

4.
The surface reactions of CH3OH, CH2DOH, and CHD2OH with cold D atoms at 10 K were investigated using an atomic beam source and FTIR. Methyl-deuterated isotopologues CH2DOH, CHD2OH, and CD3OH were produced by exposure of amorphous solid CH3OH to D atoms at 10 K, and the pseudo-first-order rates for the reactions CH3OH + D --> CH2OH + HD, CH2DOH + D --> CHDOH + HD, and CHD2OH + D --> CD2OH + HD were estimated. The ratios of the reaction rates of the second and third reactions to the first reaction were 0.69 +/- 0.11 and 0.52 +/- 0.14, respectively. The difference in reaction rates is thought to be due to a secondary kinetic isotope effect on the H-abstraction reaction from the methyl side by D atoms.  相似文献   

5.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF(3)CH(2)C(O)H and CF(3)CH(2)CH(2)OH in 700 Torr of N(2) or air diluent at 296 +/- 2 K. The rate constants determined were k(Cl+CF(3)CH(2)C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF(3)CH(2)C(O)H) = (2.57 +/- 0.44) x 10(-12), k(Cl+CF(3)CH(2)CH(2)OH) = (1.59 +/- 0.20) x 10(-11), and k(OH+CF(3)CH(2)CH(2)OH) = (6.91 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1). Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the absence of NO show the sole primary product to be CF(3)CH(2)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the presence of NO show the primary products to be CF(3)CH(2)C(O)H (81%), HC(O)OH (10%), and CF(3)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)C(O)H in the absence of NO show the primary products to be CF(3)C(O)H (76%), CF(3)CH(2)C(O)OH (14%), and CF(3)CH(2)C(O)OOH (< or =10%). As part of this work, an upper limit of k(O(3)+CF(3)CH(2)CH(2)OH) < 2 x 10(-21) cm(3) molecule(-1) s(-1) was established. Results are discussed with respect to the atmospheric chemistry of fluorinated alcohols.  相似文献   

6.
The kinetics and mechanism of the reactions of Cl atoms and OH radicals with CH3CH2CHO were investigated at room temperature using two complementary techniques: flash photolysis/UV absorption and continuous photolysis/FTIR smog chamber. Reaction with Cl atoms proceeds predominantly by abstraction of the aldehydic hydrogen atom to form acyl radicals. FTIR measurements indicated that the acyl forming channel accounts for (88 +/- 5)%, while UV measurements indicated that the acyl forming channel accounts for (88 +/- 3)%. Relative rate methods were used to measure: k(Cl + CH3CH2CHO) = (1.20 +/- 0.23) x 10(-10); k(OH + CH3CH2CHO) = (1.82 +/- 0.23) x 10(-11); and k(Cl + CH3CH2C(O)Cl) = (1.64 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). The UV spectrum of CH3CH2C(O)O2, rate constant for self-reaction, and rate constant for cross-reaction with CH3CH2O2 were determined: sigma(207 nm) = (6.71 +/- 0.19) x 10(-18) cm2 molecule(-1), k(CH3CH2C(O)O2 + CH3CH2C(O)O2) = (1.68 +/- 0.08) x 10(-11), and k(CH3CH2C(O)O2 + CH3CH2O2) = (1.20 +/- 0.06) x 10(-11) cm3 molecule(-1) s(-1), where quoted uncertainties only represent 2sigma statistical errors. The infrared spectrum of C2H5C(O)O2NO2 was recorded, and products of the Cl-initiated oxidation of CH3CH2CHO in the presence of O2 with, and without, NO(x) were identified. Results are discussed with respect to the atmospheric chemistry of propionaldehyde.  相似文献   

7.
The reaction of CH(3)C(O)O(2) with HO(2) has been investigated at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/CH(3)CHO/CH(3)OH/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)O, OH and O(2) (reaction ) has been determined from experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The dependence of the phenol yield on benzene concentration was found to be consistent with its formation from the OH-initiated oxidation of benzene, thereby confirming the presence of OH radicals in the system. The dependence of the phenol yield on the initial peroxy radical precursor reagent concentration ratio, [CH(3)OH](0)/[CH(3)CHO](0), is consistent with OH formation resulting mainly from the reaction of CH(3)C(O)O(2) with HO(2) in the early stages of the experiments, such that the limiting yield of phenol at high benzene concentrations is well-correlated with that of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel (3a)). However, a delayed source of phenol was also identified, which is attributed mainly to an analogous OH-forming channel of the reaction of HO(2) with HOCH(2)O(2) (reaction ), formed from the reaction of HO(2) with product HCHO. This was investigated in additional series of experiments in which Cl(2)/CH(3)OH/benzene/air and Cl(2)/HCHO/benzene/air mixtures were photolysed. The various reaction systems were fully characterised by simulations using a detailed chemical mechanism. This allowed the following branching ratios to be determined: CH(3)C(O)O(2) + HO(2)--> CH(3)C(O)OOH + O(2), k(3a)/k(3) = 0.38 +/- 0.13; --> CH(3)C(O)OH + O(3), k(3b)/k(3) = 0.12 +/- 0.04; --> CH(3)C(O)O + OH + O(2), k(3c)/k(3) = 0.43 +/- 0.10: HOCH(2)O(2) + HO(2)--> HCOOH + H(2)O + O(2), k(17b)/k(17) = 0.30 +/- 0.06; --> HOCH(2)O + OH + O(2), k(17c)/k(17) = 0.20 +/- 0.05. The results therefore provide strong evidence for significant participation of the radical-forming channels of these reactions, with the branching ratio for the title reaction being in good agreement with the value reported in one previous study. As part of this work, the kinetics of the reaction of Cl atoms with phenol (reaction (14)) have also been investigated. The rate coefficient was determined relative to the rate coefficient for the reaction of Cl with CH(3)OH, during the photolysis of mixtures of Cl(2), phenol and CH(3)OH, in either N(2) or air at 296 K and 760 Torr. A value of k(14) = (1.92 +/- 0.17) x 10(-10) cm(3) molecule(-1) s(-1) was determined from the experiments in N(2), in agreement with the literature. In air, the apparent rate coefficient was about a factor of two lower, which is interpreted in terms of regeneration of phenol from the product phenoxy radical, C(6)H(5)O, possibly via its reaction with HO(2).  相似文献   

8.
Product distribution studies of the OH radical and Cl atom initiated oxidation of CF3CH2CH2OH in air at 1 atm and 298 +/- 5 K have been carried out in laboratory and outdoor atmospheric simulation chambers in the presence and absence of NOx. The results show that CF3CH2CHO is the only primary product and that the aldehyde is fairly rapidly removed from the system. In the absence of NOx the major degradation product of CF3CH2CHO is CF3CHO, and the combined yields of the two aldehydes formed from CF3CH2CH2OH are close to unity (0.95 +/- 0.05). In the presence of NOx small amounts of CF3CH2C(O)O2NO2 were also observed (<15%). At longer reaction times CF3CHO is removed from the system to give mainly CF2O. The laser photolysis-laser induced fluorescence technique was used to determine values of k(OH + CF3CH2CH2OH) = (0.89 +/- 0.03) x 10(-12) and k(OH + CF3CH2CHO) = (2.96 +/- 0.04) x 10(-12) cm3 molecule(-1) s(-1). A relative rate method has been employed to measure the rate coefficients k(OH + CF3CH2CH2OH) = (1.08 +/- 0.05) x 10(-12), k(OH + C6F13CH2CH2OH) = (0.79 +/- 0.08) x 10(-12), k(Cl + CF3CH2CH2OH) = (22.4 +/- 0.4) x 10(-12), and k(Cl + CF3CH2CHO) = (25.7 +/- 0.4) x 10(-12) cm3 molecule(-1) s(-1). The results from this investigation are discussed in terms of the possible importance of emissions of fluorinated alcohols as a source of fluorinated carboxylic acids in the environment.  相似文献   

9.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

10.
The rate coefficients for the reactions OH + ClOOCl --> HOCl + ClOO (eq 5) and OH + Cl2O --> HOCl + ClO (eq 6) were measured using a fast flow reactor coupled with molecular beam quadrupole mass spectrometry. OH was detected using resonance fluorescence at 309 nm. The measured Arrhenius expressions for these reactions are k5 = (6.0 +/- 3.5) x 10(-13) exp((670 +/- 230)/T) cm(3) molecule(-1) s(-1) and k6 = (5.1 +/- 1.5) x 10(-12) exp((100 +/- 92)/T) cm(3) molecule(-1) s(-1), respectively, where the uncertainties are reported at the 2sigma level. Investigation of the OH + ClOOCl potential energy surface using high level ab initio calculations indicates that the reaction occurs via a chlorine abstraction from ClOOCl by the OH radical. The lowest energy pathway is calculated to proceed through a weak ClOOCl-OH prereactive complex that is bound by 2.6 kcal mol(-1) and leads to ClOO and HOCl products. The transition state to product formation is calculated to be 0.59 kcal mol(-1) above the reactant energy level. Inclusion of the OH + ClOOCl rate data into an atmospheric model indicates that this reaction contributes more than 15% to ClOOCl loss during twilight conditions in the Arctic stratosphere. Reducing the rate of ClOOCl photolysis, as indicated by a recent re-examination of the ClOOCl UV absorption spectrum, increases the contribution of the OH + ClOOCl reaction to polar stratospheric loss of ClOOCl.  相似文献   

11.
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure k(Cl+C(x)F(2x+1)CH(OH)(2)) (x = 1, 3, 4) = (5.84 +/- 0.92) x 10(-13) and k(OH+C(x)F(2x+1)CH(OH)(2)) = (1.22 +/- 0.26) x 10(-13) cm(3) molecule(-1) s(-1) in 700 Torr of N(2) or air at 296 +/- 2 K. The Cl initiated oxidation of CF(3)CH(OH)(2) in 700 Torr of air gave CF(3)COOH in a molar yield of 101 +/- 6%. IR spectra of C(x)F(2x+1)CH(OH)(2) (x = 1, 3, 4) were recorded and are presented. An upper limit of k(CF(3)CHO+H(2)O) < 2 x 10(-23) cm(3) molecule(-1) s(-1) was established for the gas-phase hydration of CF(3)CHO. Bubbling CF(3)CHO/air mixtures through liquid water led to >80% conversion of CF(3)CHO into the hydrate within the approximately 2 s taken for passage through the bubbler. These results suggest that OH radical initiated oxidation of C(x)F(2x+1)CH(OH)(2) hydrates could be a significant source of perfluorinated carboxylic acids in the environment.  相似文献   

12.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

13.
The reaction kinetics of chlorine atoms with a series of partially fluorinated straight-chain alcohols, CF(3)CH(2)CH(2)OH (1), CF(3)CF(2)CH(2)OH (2), CHF(2)CF(2)CH(2)OH (3), and CF(3)CHFCF(2)CH(2)OH (4), were studied in the gas phase over the temperature range of 273-363 K by using very low-pressure reactor mass spectrometry. The absolute rate coefficients were given by the expressions (in cm(3) molecule(-1) s(-1)): k(1) = (4.42 +/- 0.48) x 10(-11) exp(-255 +/- 20/T); k(1)(303) = (1.90 +/- 0.17) x 10(-11), k(2) = (2.23 +/- 0.31) x 10(-11) exp(-1065 +/- 106/ T); k(2)(303) = (6.78 +/- 0.63) x 10(-13), k(3) = (8.51 +/- 0.62) x 10(-12) exp(-681 +/- 72/T); k(3)(303) = (9.00 +/- 0.82) x 10(-13) and k(4) = (6.18 +/- 0.84) x 10(-12) exp(-736 +/- 42/T); k(4)(303) = (5.36 +/- 0.51) x 10(-13). The quoted 2sigma uncertainties include the systematic errors. All title reactions proceed via a hydrogen atom metathesis mechanism leading to HCl. Moreover, the oxidation of the primarily produced radicals was investigated, and the end products were the corresponding aldehydes (R(F)-CHO; R(F) = -CH(2)CF(3), -CF(2)CF(3), -CF(2)CHF(2), and -CF(2)CHFCF(3)), providing a strong experimental indication that the primary reactions proceed mainly via the abstraction of a methylenic hydrogen adjacent to a hydroxyl group. Finally, the bond strengths and ionization potentials for the title compounds were determined by density functional theory calculations, which also suggest that the alpha-methylenic hydrogen is mainly under abstraction by Cl atoms. The correlation of room-temperature rate coefficients with ionization potentials for a set of 27 molecules, comprising fluorinated C2-C5 ethers and C2-C4 alcohols, is good with an average deviation of a factor of 2, and is given by the expression log(k) (in cm(3) molecule(-1) s(-1)) = (5.8 +/- 1.4) - (1.56 +/- 0.13) x (ionization potential (in eV)).  相似文献   

14.
Using FTIR smog chamber techniques, k(Cl + CF3OCF2CF2H) = (2.70 +/- 0.52) x 10(-16), k(OH + CF3OCF2CF2H) = (2.26 +/- 0.18) x 10(-15), k(Cl + CF3OC(CF3)2H) = (1.58 +/- 0.27) x 10(-18) and k(OH + CF3OC(CF3)2H) = (3.26 +/- 0.95) x 10(-16) cm3 molecule(-1) s(-1) were measured. The atmospheric lifetimes of CF3OCF2CF2H and CF3OC(CF3)2H are estimated to be 27 and 216 years, respectively. Chlorine atom initiated oxidation of CF3OCF2CF2H in 700 Torr of air in the presence of NO(x) gives CF3OC(O)F in a molar yield of 36 +/- 5% and COF2 in a molar yield of 174 +/- 9%, whereas oxidation of CF3OC(CF3)2H gives CF3OC(O)CF3 and COF2 in molar yields that are indistinguishable from 100%. Quantitative infrared spectra were recorded and used to estimate global warming potentials of 3690 and 8230 (100 year time horizon, relative to CO2) for CF3OCF2CF2H and CF3OC(CF3)2H, respectively. All experiments were performed in 700 Torr of N2/O2 diluent at 296 +/- 2 K. An empirical relationship can be used to estimate the preexponential factor, which can be combined with k(298 K) to give the temperature dependence of reactions of OH radicals with organic compounds proceeding via H-atom abstraction: log(A/n) = (0.239 +/- 0.027) log(k(OH)/n) - (8.69 +/- 0.372), k(OH) is the rate constant at 298 K and n is the number of H atoms. The rates of H-atom abstraction by OH radicals and Cl atoms at 298 K from organic compounds are related by the expression log(k(OH)) = (0.412 +/- 0.049) log(k(Cl)) - (8.16 +/- 0.72). The utility of these expressions and the atmospheric chemistry of the title hydrofluoroethers are discussed.  相似文献   

15.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

16.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

17.
Smog chamber/Fourier transform infrared (FTIR) and laser-induced fluorescence (LIF) spectroscopic techniques were used to study the atmospheric degradation of CH3CHF2. The kinetics and products of the Cl(2P(3/2)) (denoted Cl) atom- and the OH radical-initiated oxidation of CH3CHF2 in 700 Torr of air or N2; diluents at 295 +/- 2 K were studied using smog chamber/FTIR techniques. Relative rate methods were used to measure k(Cl + CH3CHF2) = (2.37 +/- 0.31) x 10(-13) and k(OH + CH3CHF2) = (3.08 +/- 0.62) x 10(-14) cm3 molecule(-1) s(-1). Reaction with Cl atoms gives CH3CF2 radicals in a yield of 99.2 +/- 0.1% and CH2CHF2 radicals in a yield of 0.8 +/- 0.1%. Reaction with OH radicals gives CH3CF2 radicals in a yield >75% and CH2CHF2 radicals in a yield <25%. Absolute rate data for the Cl reaction were measured using quantum-state selective LIF detection of Cl(2P(j)) atoms under pseudo-first-order conditions. The rate constant k(Cl + CH3CHF2) was determined to be (2.54 +/- 0.25) x 10(-13) cm3 molecule(-1) s(-1) by the LIF technique, in good agreement with the relative rate results. The removal rate of spin-orbit excited-state Cl(2P(1/2)) (denoted Cl) in collisions with CH3CHF2 was determined to be k(Cl + CH3CHF2) = (2.21 +/- 0.22) x 10(-10) cm3 molecule(-1) s(-1). The atmospheric photooxidation products were examined in the presence and absence of NO(x). In the absence of NO(x)(), the Cl atom-initiated oxidation of CH3CHF2 in air leads to formation of COF2 in a molar yield of 97 +/- 5%. In the presence of NO(x), the observed oxidation products include COF2 and CH3COF. As [NO] increases, the yield of COF2 decreases while the yield of CH3COF increases, reflecting a competition for CH3CF2O radicals. The simplest explanation for the observed dependence of the CH3COF yield on [NO(x)] is that the atmospheric degradation of CH3CF2H proceeds via OH radical attack to give CH3CF2 radicals which add O2 to give CH3CF2O2 radicals. Reaction of CH3CF2O2 radicals with NO gives a substantial fraction of chemically activated alkoxy radicals, [CH3CF2O]. In 1 atm of air, approximately 30% of the alkoxy radicals produced in the CH3CF2O2 + NO reaction possess sufficient internal excitation to undergo "prompt" (rate >10(10) s(-1)) decomposition to give CH3 radicals and COF2. The remaining approximately 70% become thermalized, CH3CF2O, and undergo decomposition more slowly at a rate of approximately 2 x 10(3) s(-1). At high concentrations (>50 mTorr), NO(x) is an efficient scavenger for CH3CF2O radicals leading to the formation of CH3COF and FNO.  相似文献   

18.
FTIR-smog chamber techniques were used to study the products of the Cl atom and OH radical initiated oxidation of CF3CH=CH2 in 700 Torr of N2/O2, diluent at 296 K. The Cl atom initiated oxidation of CF3CH=CH2 in 700 Torr of air in the absence of NOx gives CF3C(O)CH2Cl and CF3CHO in yields of 70+/-5% and 6.2+/-0.5%, respectively. Reaction with Cl atoms proceeds via addition to the >C=C< double bond (74+/-4% to the terminal and 26+/-4% to the central carbon atom) and leads to the formation of CF3CH(O)CH2Cl and CF3CHClCH2O radicals. Reaction with O2 and decomposition via C-C bond scission are competing loss mechanisms for CF3CH(O)CH2Cl radicals, kO2/kdiss=(3.8+/-1.8)x10(-18) cm3 molecule-1. The atmospheric fate of CF3CHClCH2O radicals is reaction with O2 to give CF3CHClCHO. The OH radical initiated oxidation of CxF2x+1CH=CH2 (x=1 and 4) in 700 Torr of air in the presence of NOx gives CxF2x+1CHO in a yield of 88+/-9%. Reaction with OH radicals proceeds via addition to the >C=C< double bond leading to the formation of CxF2x+1C(O)HCH2OH and CxF2x+1CHOHCH2O radicals. Decomposition via C-C bond scission is the sole fate of CxF2x+1CH(O)CH2OH and CxF2x+1CH(OH)CH2O radicals. As part of this work a rate constant of k(Cl+CF3C(O)CH2Cl)=(5.63+/-0.66)x10(-14) cm3 molecule-1 s-1 was determined. The results are discussed with respect to previous literature data and the possibility that the atmospheric oxidation of CxF2x+1CH=CH2 contributes to the observed burden of perfluorocarboxylic acids, CxF2x+1COOH, in remote locations.  相似文献   

19.
Carbon-hydrogen bond cleavage reactions of CH3OH and CH4 by a dirhodium(II) diporphyrin complex with a m-xylyl tether (.Rh(m-xylyl)Rh.(1)) are reported. Kinetic-mechanistic studies show that the substrate reactions are bimolecular and occur through the use of two Rh(II) centers in the molecular unit of 1. Second-order rate constants (T = 296 K) for the reactions of 1 with methanol (k(CH3OH) = 1.45 x 10-2 M-1 s-1) and methane (k(CH4) = 0.105 M-1 s-1) show a clear kinetic preference for the methane activation process. The methanol and methane reactions with 1 have large kinetic isotope effects (k(CH3OH)/k(CD3OD) = 9.7 +/- 0.8, k(CH4)/k(CD4) = 10.8 +/- 1.0, T = 296 K), consistent with a rate-limiting step of C-H bond homolysis through a linear transition state. Activation parameters for reaction of 1 with methanol (DeltaH = 15.6 +/- 1.0 kcal mol-1; DeltaS = -14 +/- 5 cal K-1 mol-1) and methane (DeltaH = 9.8 +/- 0.5 kcal mol-1; DeltaS = -30 +/- 3 cal K-1 mol-1) are reported.  相似文献   

20.
Molecular chlorine, methanol, and helium are co-expanded into a vacuum chamber using a custom designed "late-mixing" nozzle. The title reaction is initiated by photolysis of Cl2 at 355 nm, which generates monoenergetic Cl atoms that react with CH3OH at a collision energy of 1960 +/- 170 cm(-1) (0.24 +/- 0.02 eV). Rovibrational state distributions of the nascent HCl products are obtained via 2 + 1 resonance enhanced multiphoton ionization, center-of-mass scattering distributions are measured by the core-extraction technique, and the average internal energy of the CH3OH co-products is deduced by measuring the spatial anisotropy of the HCl products. The majority (84 +/- 7%) of the HCl reaction products are formed in HCl(v = 0) with an average rotational energy of [Erot] = 390 +/- 70 cm(-1). The remaining 16 +/- 7% are formed in HCl(v = 1) and have an average rotational energy of [Erot] = 190 +/- 30 cm(-1). The HCl(v = 1) products are primarily forward scattered, and they are formed in coincidence with CH2OH products that have little internal energy. In contrast, the HCl(v = 0) products are formed in coincidence with CH2OH products that have significant internal energy. These results indicate that two or more different mechanisms are responsible for the dynamics in the Cl + CH3OH reaction. We suggest that (1) the HCl(v = 1) products are formed primarily from collisions at high impact parameter via a stripping mechanism in which the CH2OH co-products act as spectators, and (2) the HCl(v = 0) products are formed from collisions over a wide range of impact parameters, resulting in both a stripping mechanism and a rebound mechanism in which the CH2OH co-products are active participants. In all cases, the reaction of fast Cl atoms with CH3OH is with the hydrogen atoms on the methyl group, not the hydrogen on the hydroxyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号