首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyelectrolyte complexes (PECs) were prepared from N,N,N-trimethylchitosan iodide (TMCh) of different molar mass and a weak polyacid-poly(acrylic acid) (PAA) or a strong polyacid-poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The quaternization of the amino groups of chitosan enabled the formation of water-insoluble PECs in a broad pH range—from 3 to 12 and from 1 to 12 for TMCh/PAA and TMCh/PAMPS, respectively. Whereas the stoichiometry of the TMCh/PAA complex was pH dependant, the stoichiometry of the TMCh/PAMPS complex did not depend on pH. The stoichiometry and the yield of the complexes were influenced by the molar mass of TMCh. PEC nanoparticles were produced by mixing dilute solutions of the oppositely charged polyelectrolytes as revealed by dynamic light scattering analyses. The size of the particles was in the range of 135–924 nm and depended on the polyelectrolyte molar mass, the initial polyelectrolyte concentration, and the molar fraction of the TMCh units. Microbiological screening against Staphylococcus aureus and Escherichia coli revealed that PECs between TMCh and PAA or PAMPS have a good antibacterial effect, which is more slowly pronounced than that of the starting TMCh of different molar mass.  相似文献   

2.
For the first time, the polyelectrolyte complex (PEC) formation tool was used for preparation of core‐shell nanoparticles form the natural polyampholyte N‐carboxyethylchitosan (CECh) and weak polycationic (protonated) polyoxyethylene‐b‐poly[2‐(dimethyl‐amino)ethyl methacrylate] (POE‐b‐PDMAEMA) diblock copolymers. The performed dynamic light scattering analyses revealed that nanoparticles with a PEC core and a POE shell could be formed at mixing ratio between the oppositely charged groups equal to 1/1 depending on CECh molar mass, polymerization degree of PDMAEMA block and ionic strength. The results were confirmed by the performed AFM and cryo‐TEM analyses. When high molar mass CECh was used, core‐shell nanoparticles were obtained with the diblock copolymer of the shortest PDMAEMA block at ionic strength (I) of 0.01. At ionic strength value close to the physiological one (I = 0.1) secondary aggregation occurred. Spherical nanoparticles at I = 0.1 were obtained upon lowering the CECh molar mass. Depending on the polymer partners and medium parameters the size of the obtained particles varied from 60 to 600 nm. The X‐ray photoelectron spectra evidenced the hydrophilic POE‐block shell—coacervate CECh/PDMAEMA‐block core structure. The nanoparticles are stable in a rather narrow pH range around 7.0, thus revealing the high pH‐sensitivity of the obtained core‐shell particles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2105–2117, 2009  相似文献   

3.
A simple method to obtain novel nanofibers composed of polyelectrolyte complexes (PECs) has been proposed. It consists of the electrospinning of a mixed homogeneous solution of polyelectrolyte partners, and the formation of PEC during the electrospinning. This was achieved by careful choice of the composition of the spinning solutions. Chitosan was the polycationic partner, with either a weak polyacid [poly(acrylic acid), PAA] as a counterpart or a strong one [poly(2‐acrylamido‐2‐methylpropanesulfonic acid), PAMPS]. The fibrous mats were composed of nanofibers with mean diameters of ca. 100 nm. They retained their integrity over the pH range which is typical of the corresponding PEC.

  相似文献   


4.
Polymer-stabilized magnetic nanoparticles were obtained using two biocompatible polyelectrolytes: N-carboxyethylchitosan (CECh) and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The size of the particles (mean diameter 10 or 30 nm, respectively) and the stability of the dispersions could be effectively controlled depending on the polyelectrolyte nature. The presence of polyelectrolyte shell was proved by transmission electron microscopy (TEM) studies and confirmed by thermogravimetric analyses. Depending on the polyelectrolyte nature the magnetic nanoparticles existed in different magnetic states - superparamagnetic or intermediate state between superparamagnetic and ferrimagnetic one, as evidenced by the measurements of the magnetization and Mössbauer analyses. Fabrication of nanocomposite magnetic fibers with mean diameter in the range 100-500 nm was achieved using electrospinning of the system CECh/ferrofluid/non-ionogenic polymer.  相似文献   

5.
Water‐soluble crosslinked hollow nanoparticles were prepared using pH‐responsive anionic polymer micelles as templates. The template micelles were formed from pH‐responsive diblock copolymers (PAMPS‐PAaH) composed of the poly(sodium 2‐(acrylamido)‐2‐methylpropanesulfonate) and poly(6‐(acrylamido)hexanoic acid) blocks in an aqueous acidic solution. The PAMPS and PAaH blocks form a hydrophilic anionic shell and hydrophobic core of the core‐shell polymer micelle, respectively. A cationic diblock copolymer (PEG‐P(APTAC/CEA)) with the poly(ethylene glycol) block and random copolymer block composed of poly((3‐acrylamidopropyl)trimethylammonium chloride) containing a small amount of the 2‐(cinnamoyl)ethylacrylate photo‐crosslinkable unit can be adsorbed to the anionic shell of the template micelle due to electrostatic interaction, which form a core‐shell‐corona three‐layered micelle. The shell of the core‐shell‐corona micelle is formed from a polyion complex with anionic PAMPS and cationic P(APTAC/CEA) chains. The P(APTAC/CEA) chains in the shell of the core‐shell‐corona micelle can be photo‐crosslinked with UV irradiation. The template micelle can be dissociated using NaOH, because the PAaH blocks are ionized. Furthermore, electrostatic interactions between PAMPS and PAPTAC in the shell are screened by adding excess NaCl in water. The template micelles can be completely removed by dialysis against water containing NaOH and NaCl to prepare the crosslinked hollow nanoparticles. Transmission electron microscopy observations confirmed the hollow structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Layer-by-layer polyelectrolyte adsorption is a simple, convenient method for introducing ion-exchange sites in porous membranes. This study demonstrates that adsorption of poly(acrylic acid) (PAA)-containing films at pH 3 rather than pH 5 increases the protein-binding capacity of such polyelectrolyte-modified membranes 3-6-fold. The low adsorption pH generates a high density of -COOH groups that function as either ion-exchange sites or points for covalent immobilization of metal-ion complexes that selectively bind tagged proteins. When functionalized with nitrilotriacetate (NTA)-Ni(2+) complexes, membranes containing PAA/polyethylenimine (PEI)/PAA films bind 93 mg of histidine(6)-tagged (His-tagged) ubiquitin per cm(3) of membrane. Additionally these membranes isolate His-tagged COP9 signalosome complex subunit 8 from cell extracts and show >90% recovery of His-tagged ubiquitin. Although modification with polyelectrolyte films occurs by simply passing polyelectrolyte solutions through the membrane for as little as 5 min, with low-pH deposition the protein binding capacities of such membranes are as high as for membranes modified with polymer brushes and 2-3-fold higher than for commercially available immobilized metal affinity chromatography (IMAC) resins. Moreover, the buffer permeabilities of polyelectrolyte-modified membranes that bind His-tagged protein are ~30% of the corresponding permeabilities of unmodified membranes, so protein capture can occur rapidly with low-pressure drops. Even at a solution linear velocity of 570 cm/h, membranes modified with PAA/PEI/PAA exhibit a lysozyme dynamic binding capacity (capacity at 10% breakthrough) of ~40 mg/cm(3). Preliminary studies suggest that these membranes are stable under depyrogenation conditions (1 M NaOH).  相似文献   

7.
A novel method for preparing poly (2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS) and poly (vinylpyrrolidone) (PVP) complex nanogels in PVP aqueous solution is discussed in this paper. The PAMPS/PVP complex nanogels were prepared via polymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) monomer in the presence of PVP nanoparticles which formed in water/acetone cosolvent in presence of N, N′‐methylenebisacrylamide (MBA) as a crosslinker, N, N, N′, N′‐tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The results of FTIR and 1H NMR spectra indicated that the compositions of PAMPS/PVP are consistent with the designed structure. TEM micrographs proved that PAMPS/PVP nanogels possess the spherical morphology before and after swelling. These PAMPS/PVP nanogels exhibited pH‐induced phase transition due to protonation of PAMPS chains. The properties of PAMPS/PVP nanogels indicate that PAMPS/PVP nanogels can be developed into a pH‐controlled drug delivery system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The complexation between poly(N,N-diethylacrylamide) (PDEA) and poly(acrylic acid) (PAA) in aqueous solution was studied by viscometric, potentiometric, and fluorescence techniques. It was found that an interpolymer complex formed between the two polymers through hydrogen bonding interactions with the stoichiometry of r=0.6 (r is unit molar ratio of PAA/PDEA), and the complex formation show the dependence on pH values. The phase behaviour studies showed that the lower critical solution temperature of the PDEA-PAA aqueous solution gradually increased with the increasing of r from 0.01 to 0.15, until a soluble system in the whole temperature region was obtained, which remained in the range of r=0.15-0.3. At higher PAA concentrations, when r is above 0.3, the system appeared phase separation, and almost no temperature dependence was observed. Based on these conclusion and structure characteristics of PDEA and PAA, a model containing only short sequences of monomer residues was proposed for the structure of PDEA-PAA complex.  相似文献   

9.
Polyelectrolyte complexes (PECs) between (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and (crosslinked) N-carboxyethylchitosan (CECh) or poly(2-acrylamido-2-methylpropane sodium sulfonate) (PAMPSNa) were prepared and characterized in terms of their stability, equilibrium water content, and surface morphology. The evaluation of the behavior of the studied PECs in contact with blood revealed that the (crosslinked) CECh/(quaternized) PDMAEMA complexes had lost the inherent PDMAEMA cytotoxicity but still preserved haemostatic activity. In contrast, the complex formation between (quaternized) PDMAEMA and PAMPSNa allowed the preparation of materials with improved blood compatibility.  相似文献   

10.
Insoluble complexes are formed in acidic aqueous media when poly(acrylic acid) (PAA) and poly-(vinylbenzo-18-crown-6) (P18C6) or polyvinylbenzoglymes are mixed. Complex formation results from hydrogen bonding between carboxyl groups and crown ether- or glyme–oxygen atoms as well as from hydrophobic interactions. The precipitation is pH dependent and was determined as a function of the ratio PAA to P18C6 or to polyglyme at different HCl concentrations in 10?4M solutions of polycrown or polyglyme. Precipitation is nearly quantitative in 0.01N HCl. The compositions of PAA/P18C6 precipitates were determined as a function of the initial PAA/P18C6 ratio in solution. The complexes with P18C6 can be solubilized in acidic media when crown-complexable cations (K+, Cs+, Ba2+) are added, but the charged P18C6 reprecipitates in basic solution as a polysalt complex with the PAA–polyanion. More stable PAA–P18C6 complexes in the form of fibers can be obtained by interfacial complex formation. Poly(methacrylic acid) is less effective as a complex former.  相似文献   

11.
Nanoparticles are commonly stabilized through the adsorption of acidic/basic polyelectrolytes around the surface of the particle. One example of these nanoparticles is poly(ethylenimine) (PEI)-capped Au nanoparticles. In this work, we have examined by means of surface-enhanced Raman scattering (SERS) of 2,6-dimethylphenylisocyanide (2,6-DMPI) how much the surface potential of Au nanoparticles is affected by the solution pH through the mediation of the protonation and deprotonation of PEI in contact with Au nanoparticles. In fact, the surface-potential-dependent isocyanide (NC) stretching peak of 2,6-DMPI has shifted sharply around pH 8.5, close to the pK(a) value of the primary amine of PEI. When a negatively charged poly(acrylic acid) (PAA) was deposited onto the PEI, the peak shift of the NC stretching band took place around pH 6.5, close to the average pK(a) value of PEI and PAA. When additional PEI was deposited on PAA, the peak shift of the NC stretching band occurred once again around pH 8.5, indicative of the stronger interaction of upper two polyelectrolyte layers. These data clearly illustrate the usefulness of SERS in the elucidation of a delicate interaction of cationic and anionic polyelectrolytes, especially in layer-by-layer deposition.  相似文献   

12.
《Electroanalysis》2003,15(13):1139-1142
Electrochemical properties of Fc‐PEM films have been studied by changing the chemical structure of the polymer chains and the content of Fc moiety in the film systematically. We have prepared a series of PEM films by a layer‐by‐layer deposition of polycations, Fc‐modified poly(allylamine) (Fc‐PAA) and poly(ethyleneimine) (Fc‐PEI), and polyanionic poly(vinyl sulfate) (PVS) on the surface of a gold electrode. The redox properties of the Fc‐PAA/PVS and Fc‐PEI/PVS films depended significantly on the content of Fc moiety in the polymer chains and on the polymer type. Fc‐ PAA and Fc‐PEI polymer chains can penetrate 3 or 4 PAA/PVS bilayers inserted between the redox polymers and electrode. The Fc‐PAA film‐modified electrode can be used for electrocatalytic oxidation of ascorbic acid.  相似文献   

13.
14.
The complex formation of poly-2-[(methacryloyloxy)-ethyl]trimethylammonium chloride (PMADQUAT) with poly(acrylic acid) (PAA) of different molecular weights has been studied in aqueous solutions by potentiometric, viscometric, turbidimetric and FTIR spectroscopic methods. The formation of insoluble non-stoichiometric polyelectrolyte complexes has been shown. The stability of polyelectrolyte complexes in solutions of different pH and ionic strength has been evaluated. The formation of polyelectrolyte complexes between hydrogels of PMADQUAT and linear PAA of different molecular weights has been studied. It was shown that the molecular weight of PAA considerably affects the kinetics of interaction as well as the final state of gel-polymer complex.  相似文献   

15.
Polyelectrolyte (PE) complexes (PECs) between long polycation poly(methacryloyloxyethyl dimethylbenzylammonium chloride) and short polyanion polystyrene sulfonic acid adsorbed onto mica were studied by atomic force microscopy. If one component is taken in excess, then a rapid coupling of the oppositely charged polyions first leads to the formation of nonequilibrium structures when collapsed PEC particles coexist with unreacted PEs molecules. The equilibrium PEC particles possess micelle-like core-shell morphology if the short polyion is taken in excess. When long PE is given in excess, equilibrium PECs are stabilized by wrapping the long polyion around hydrophobic segments of the PEC. We propose that transformations of initially formed nonequilibrium aggregates proceed through slow reactions (addition or/and substitution) of primary complexes with unreacted PEs chains, which finally leads to equilibrium PECs with optimized morphology. As expected, the mixing of oppositely charged PEs in a near-stoichiometric ratio leads to highly aggregated water-insoluble PECs.  相似文献   

16.
阳离子基因载体的pH敏感遮蔽体系的制备及表征   总被引:1,自引:1,他引:0  
合成了一种pH敏感的遮蔽体系-谷氨酸苄酯/谷氨酸共聚物(PBLG-co-PGA), 用于对DNA/阳离子基因载体复合物颗粒表面正电荷的遮蔽, 以提高其在体内的稳定性. 研究表明, PBLG-co-PGA (PGA(x), x为PGA占共聚物中摩尔百分数)具有pH敏感性. 并以pH敏感点接近生理pH值的PGA(60)为遮蔽体系进行研究. PGA(60)能够对DNA/PEI(1:1)复合物颗粒表面正电荷进行有效遮蔽. 凝胶阻滞电泳显示, 用PGA(60)对DNA/PEI复合物进行不同比例遮蔽, 没有发生与DNA的链交换作用. MTT细胞毒性测试表明, PGA(60)和三元复合物DNA/PEI/PGA(60) 在测试范围内几乎没有细胞毒性. 荧光素酶转染实验表明, 部分遮蔽后转染效率有所提高; 用PGA(60)对DNA/PEI复合物完全遮蔽为负电后, 由于同细胞表面的电荷排斥作用, 三元复合物不易被细胞内吞, 导致不发生细胞转染. 因其合适的pH响应性, PGA(60)将可能成为一种能随pH值的变化, 实现对聚阳离子基因载体进行电荷遮蔽/智能释放的遮蔽材料.  相似文献   

17.
We report a novel strategy to study the chain dynamics of poly(acrylic acid) (PAA) in a relative concentrated solution (1.0 g/L). The strategy is based on the fluorescent probe (DCTPE) with unique aggregation-induced emission (AIE) characteristics. Free DCTPE molecules are non-emissive in aqueous solution, but they become highly emissive when trapped in polymer coils. The fluorescence intensity is proportional to the efficiency of trapping DCTPE molecules in polymer coils. By correlation the change of fluorescence intensity with the variation of pH value (from 1.78 to 12.06), the PAA chain’s dynamics in the relatively concentrated solution have been elucidated into three processes. In the pH range from 12.06 to 6.0, PAA chains take an extended and non-folding conformation. Changing pH from 6.0 to 3.86, PAA chains are partially protonated and loosely packed polymer coils are formed. Further lowering the pH value of the solution (from 3.86 to 1.78), protonated segments dominate the PAA chains, and at the same time, the intermolecular hydrogen bonding takes effect, thus the polymer chains posses in the conformation of more compact coils.  相似文献   

18.
In aqueous solutions at room temperature, poly( N-methyl-2-vinyl pyridinium iodide)- block-poly(ethylene oxide), P2MVP 38- b-PEO 211 and poly(acrylic acid)- block-poly(isopropyl acrylamide), PAA 55- b-PNIPAAm 88 spontaneously coassemble into micelles, consisting of a mixed P2MVP/PAA polyelectrolyte core and a PEO/PNIPAAm corona. These so-called complex coacervate core micelles (C3Ms), also known as polyion complex (PIC) micelles, block ionomer complexes (BIC), and interpolyelectrolyte complexes (IPEC), respond to changes in solution pH and ionic strength as their micellization is electrostatically driven. Furthermore, the PNIPAAm segments ensure temperature responsiveness as they exhibit lower critical solution temperature (LCST) behavior. Light scattering, two-dimensional 1H NMR nuclear Overhauser effect spectrometry, and cryogenic transmission electron microscopy experiments were carried out to investigate micellar structure and solution behavior at 1 mM NaNO 3, T = 25, and 60 degrees C, that is, below and above the LCST of approximately 32 degrees C. At T = 25 degrees C, C3Ms were observed for 7 < pH < 12 and NaNO 3 concentrations below approximately 105 mM. The PEO and PNIPAAm chains appear to be (randomly) mixed within the micellar corona. At T = 60 degrees C, onion-like complexes are formed, consisting of a PNIPAAm inner core, a mixed P2MVP/PAA complex coacervate shell, and a PEO corona.  相似文献   

19.
The phase states of mixed dilute solutions of PAA, PEG, and Cu2+ ions largely determines the mechanism governing the growth of metal nanoparticles during the subsequent reduction of copper ions. Mixtures with PAA: PEG > 1 base-mol/base-mol and PAA: Cu2+ ≥ 5 base-mol/mol are studied. It is shown that the simultaneous complexation of PAA with PEG and Cu2+ ions in these mixtures at pH values below the intrinsic pH of a solution is accompanied by phase separation related to insolubility of PAA-PEG interpolymer complexes. A decrease in the pH of the ternary mixture is caused by the release of a strong low-molecular-mass acid due to complexation with Cu2+ ions. The minimum pH value, above which the PAA-PEG-Cu2+ system becomes single-phase (a transparent solution), depends on the concentration ratio between PAA and PEG chains (the mean degree of polymerization). This value is either 6.8–7.0 (if all macromolecules are incorporated in the insoluble interpolymer complex with PEG) or 4.0 (if chains occur in excess). Methods of preparing single-phase systems in the pH range 4.0–7.0 via exchange reactions of the PAA-Cu2+ complex with PEG or the nonstoichiometric soluble interpolymer complex PAA-PEG are developed. Viscometry, electron microscopy, and dynamic light scattering are used to investigate the compositions and structures of soluble complexes, in which either each chain (if the chain is long) may be linked with both PEG and Cu2+ ions or PAA chains are redistributed between two complexes (at comparable lengths of PAA and PEG chains).  相似文献   

20.
The mixing of Ag ion-doped poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAA) produced Ag ion-doped polyelectrolyte complex particles (PECs) in solution. Positively charged Ag ion-doped PECs (Ag ion PECs) with a spherical shape were deposited alternatively with PAA to form a multilayer assembly. The multilayered film containing Ag ion PECs was reduced to generate a composite nanostructure. Metal nanoparticle (NP)-enriched nanocomposite films were formed by an additional process of the postadsorption of precursors on PECs within the nanocomposite films, which resulted in the enhancement of the catalytic and electrical properties of the composite films. Because the films contain PECs that are responsive to changes in pH and most of the NPs are embedded in the PECs, interesting catalytic properties, which are unexpected in a particle-type catalyst, were observed upon pH changes. As a result of the reversible structural changes of the films and the immobilization of the NPs within the films, the film-type catalysts showed enhanced performance and stability during catalytic reactions under various pH conditions, compared to particle-type catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号