首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An N-substituted maleimide has been used in conjunction with ketocoumarins and a tertiary amine to initiate the polymerization of 1,6-hexanedioldiacrylate in both the UV (365/366 nm) and visible region (436 nm) of the electromagnetic spectrum. The rate of polymerization of three ketocoumarin/tertiary amine combinations are significantly increased by the addition of a N-substituted maleimide, presumably due to oxidation of the coumarin ketyl radical formed by interaction between the triplet state of the ketocoumarin and the tertiary amine.  相似文献   

2.
This study describes the preparation and the characterization of a new thiol-ene based polymeric fluorescence sensor by photo initiated polymerization of trimethylolpropane tris(3-mercaptopropionate), 2-hydroxyethylacrylate, and 2,4,6-triallyloxy-1,3,5-triazine which are used as monomers and also a photo initiator (2,2-dimethoxy-2-phenylacetophenone) for its usage as optical sensor for gold ions. The thiol-ene based polymeric membrane sensor was characterized by using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The response characteristics of the sensors including dynamic range, pH effect, response time, and the effect of foreign ions were investigated. Fluorescence spectra showed that the excitation/emission maxima of the membrane were at 379/425 nm, respectively  相似文献   

3.
In order to obtain functional polymer latex particles with clean surface and with surface carboxyl groups, P(MMA-EA) seed particles with the diameter of 335 nm were first synthesized via soap-free batch emulsion polymerization of methyl methacrylate (MMA) and ethyl acrylate (EA), and then the seeded emulsion copolymerization of MMA, EA and MAA (methacrylic acid) onto the seed particles were performed in the absence of emulsifier. Influences of ingredients and conditions on polymerization, latex particle size (Dp) and its distribution were investigated. Results showed that most of the monomers polymerized onto the seed latex particles in the second step of polymerization by using drop-wise addition method, and Dp increased from 483 nm to 829 nm with the mass ratio of core/shell monomers [C]/[S] decreased from 1:2 to 1:15. It was found that Dp decreased with the increase of MAA and initiator amounts, and the size of the latex particles became uniform with the decrease of MAA amount and with the increase of [C]/[S] value.  相似文献   

4.
Emulsifier-free latex of fluorinated acrylate copolymer   总被引:2,自引:0,他引:2  
Emulsifier-free latices of fluorinated acrylate copolymers were prepared by semicontinuous polymerization method, with perfluoroalkylethyl methacrylate (Zonyl TM) as a fluoromonomer. Ultrasonic at 40 kHz was adopted to help monomers disperse well in water. The relationships of polymerization conditions between the final conversion and polymerization stability were discussed in detail and the optimal polymerization condition was given. A fluorinated acrylate copolymer was finally obtained and its Tg was 54 °C. The average particle size of the latex was about 601 nm and the particle size distribution of the latex was narrow. The latex film exhibited a low surface free energy and good surface property. By using 6% Zonyl TM, the water contact angle of the film-air interface increased significantly and reached to 110.2°. Compared with the latex film of fluorine-free polyacrylate prepared under the similar polymerization condition, the fluorinated latex film had a better water-resistance and thermal stability.  相似文献   

5.
An in situ photopolymerization-coating technique was applied to wrap the pellets surface with a pH-sensitive hydrogel layer made from acrylic acid and hydrophobic acrylate monomers. Powdered cellulose (Elcema® P100) and poly(vinylpyrrolidone) (Kollidon® 30) pellets containing theophylline were prepared by extrusion-spheronization, sprayed with an ethanol:water 50:50 v/v solution of the monomers, the cross-linker (N,N′-methylenebis(acrylamide)) and the initiator (Irgacure® 2959), and immediately irradiated at 366 nm. The composition of coating mixture and the time of irradiation were optimized using oscillatory rheometry and analyzing the swelling and the drug release behaviour of the resultant hydrogels. When acrylic acid:lauryl acrylate 88:12 molar ratio was used, the coating did not significantly change the shape, size, or friability of the pellets, but remarkably modified theophylline release profiles. The thicker the coating layer, the better the pH-dependent control of drug release.  相似文献   

6.
The laser-initiated polymerization of a thiol-ene photopolymerizable system was studied. The laser was operated in single- and multiple-pulse modes to generate exotherms, which were measured in a modified differential scanning calorimeter. Arrhenius plots of the polymerization, obtained by measuring polymerization exotherms at various temperatures, showed positive and negative portions. Pseudoactivation energies for the thiol-ene polymerization increased rapidly at low conversions (<50%) of the thiol and ene chromophores. The results were comparable to those obtained from photopolymerization of multifunctional acrylate monomers.  相似文献   

7.
2-Methoxy ethyl acrylate (MEA), a functional monomer was homopolymerized using atom transfer radical polymerization (ATRP) technique with methyl 2-bromopropionate (MBP) as initiator and CuBr/N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system; polymerization was conducted in bulk at 60 °C and livingness was established by chain extension reaction. The kinetics as well as molecular weight distribution data indicated towards the controlled nature of polymerization. The initiator efficiency and the effect of initiator concentration on the rate of polymerization were investigated. The polymerization remained well-controlled even at low catalyst concentration of 10% relative to initiator. The influence of different solvents, viz. ethylene carbonate and toluene on the polymerization was investigated. End-group analysis for the determination of high degree of functionality of PMEA was determined with the help of 13C{1H} NMR spectra. Chain extension experiment was conducted with PMEA macroinitiator for ATRP of acrylonitrile (AN) in ethylene carbonate at 70 °C using CuCl/bpy as catalyst system. The composition of individual blocks in PMEA-b-PAN copolymers was determined using 1H NMR spectra.  相似文献   

8.
Reversible addition fragmentation chain transfer (RAFT) polymerization of cholesteryl acrylate (ChA) was conducted using S-1-dodecyl-S′-(α,α′-dimethyl-α′′-acetic acid)trithiocarbonate as CTA and AIBN as initiator in toluene at 80 °C. The polymerization was investigated at two different CTA concentrations (0.025 and 0.040 M). Polymerization of ChA with CTA concentration of 0.040 M proceeds in a controlled/living manner as evidenced by linear increase of the molecular weight with conversion and narrow polymer polydispersity (PDI < 1.2). With lower initial CTA concentration, namely 0.025 M, although poly(cholesteryl acrylate) (PChA) exhibiting narrow molecular weight distributions could be synthesized, the polymerization showed relatively low control with many termination products. Chain extension polymerizations were performed starting from either the PChA or the polystyrene (PS) block, and well-defined copolymers based on ChA and styrene were prepared. Thermal properties of PChA and PS-b-PChA copolymer were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and the results showed that both PChA and PS-b-PChA are amorphous polymers. PChA begins to decompose at ca. 218 °C with maximum weight loss rate at 351 °C, while PS-b-PChA shows double weight loss rate peaks located at 345 and 415 °C, respectively.  相似文献   

9.
A new styrene derivative monomer, 4-(N-carbazolyl)methyl styrene (CzMS), was synthesized by reacting 4-chloromethyl styrene with carbazole in the presence of sodium hydride. Then, CzMS was homopolymerized and copolymerized with different monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA) and n-butyl acrylate (BA) by free radical polymerization method in N,N-di-methylformamide (DMF) solution at 70 ± 1 °C using azobisisobutyronitrile initiator to give the copolymers I-V in good yields. The structure of all the resulted polymers was characterized and confirmed by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The average molecular weight and glass transition temperature of polymers were determined using gel permeation chromatograph (GPC) and differential scanning calorimeter (DSC) instruments, respectively. It was found that these polymers with carbazole moieties have high thermal stability and the presence of bulk carbazole groups in polymer side chains leads to an increase in the rigidity and glass transition temperature of polymers.  相似文献   

10.
The functional polymer containing carbazole unit, [(poly(9-(4-vinylbenzyl)-9H-carbazole) (PVBK)], was successfully prepared via nitroxide-mediated living free-radical polymerization of 9-(4-vinylbenzyl)-9H-carbazole (VBK). The controlled features of the polymerization were confirmed by the linear increase in the molecular weight with the monomer conversion while keeping the relative narrow molecular weight distribution (Mw/Mn ? 1.51), and successful chain extension with styrene. The resulting polymer absorbed light in the 305-355 nm range and exhibited fluorescent emission at 350 nm. The fluorescent intensity of the polymer was lower than that of monomer and was affected by the properties of the different solvents, which decreased in the following order: DMF > THF > CHCl3 at the same concentration of carbazole units. The fluorescence intensity of the polymer was apparently influenced by chromophore concentration, and the maximum value was obtained when the carbazole unit concentration was around 8 × 10−5 mol/L. Moreover, it was shown that the strong fluorescence of PVBK can be quenched by methyl acrylate (MA).  相似文献   

11.
Liquid crystal is a material which is between solid and liquid phase and commonly called mesophase. Blends of liquid crystal are of great interest because of their unique optical properties. Blending in this study using two monomers of liquid crystal were cholesteryl acrylate and methyl phenyl benzoyl acrylate. The polymerization process using uv curing techniques by irradiation UV ray and without irradiation UV ray. Polymerization of blending liquid crystal acrylate using initiator 2-hydroxy-2-methyl-1-phenylpropane. Based on peak at GPC curve of polymerization by irradiation UV ray, type of that polymer is copolymer. Therefore the polymerization without UV ray, type of that polymer is homopolymer. SEM images of liquid crystal acrylate polymer showed lamella chain models that are characteristic of a polymer chains. Type of polymer liquid crystal acrylate was the type of Side Chain Liquid Crystalline Polymers (SCLCPs). Therefore acrylate polymer liquid crystal in this research has semi-crystalline phase, which contained crystalline phase and amorphous phase on the XRD pattern. The results of FT-IR spectroscopic characterization of the two monomers showed a peak at the wave number of 1600.43 cm -1 and 1622.86 cm-1 which indicates a double bond (C=C) were obtained from acrylation. While the spectroscopy on the product blending the wave number of the peak regions is reduced that shows that carbon double bonds (C=C) in the acrylate group has polymerized. It also strengthened with a very sharp peak for CC functional groups on the wave number of 2855.15 cm-1. The results of this study indicate that the liquid crystal polymer acrylic polymerization results with radiation UV ray and without UV ray, respectively absorb light in the UV wavelength region 363 nm and 351 nm.  相似文献   

12.
Methylmethacrylate copolymer nanoparticles with different hydrophilic chains were prepared by the free radical polymerization of methylmethacrylate with N-isopropylacrylamide (NIPAAm), N-methacrylic acid (MAA), N-trimethylaminoethylmethacrylate chloride (TMAEMC) or N-dimethylaminoethylmethacrylate hydrochloride (DMAEMC). These particles were characterized by particle size and zeta potential. The polymerization conditions were shown to influence the particle size and surface charge. Particle sizes of MMA-NIPAAm nanoparticles after 3 h of reaction reached constant level at 180 nm. An increasing amount of total monomer (0.5-5%) would result in the nanoparticles of particle size of 115-204 nm for 30% NIPAAm of the total monomer. In the same range of 5-40% NIPAAm of the total monomer, the particle size decreased from 280 to 170 nm. The concentration of the initiator APS up to a concentration of 0.2% for MMA-TMAEMC and 0.1% for MMA-NIPAAm showed no effect on the particle size of the final nanoparticle suspensions, while higher concentration would lead to aggregation in the polymerization process. MMA-NIPAAm nanoparticles were pH-dependent in zeta potential at pH 1-12 values reducing from 12.2 mV to −16.8 mV, respectively. Nanoparticles were incubated with pepsin and trypsin at 37 °C for 20 min and their enzyme inhibition was determined. The activity of pepsin decreased to 27% in the presence of MMA-NIPAAm nanoparticles, and MMA-MAA nanoparticles reduced the activity of trypsin to 39%, respectively.  相似文献   

13.
Block copolymers consisting of poly(solketal acrylate) and poly(l-lactide) were synthesized by combination of atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) technique. Block copolymerization has been done by two different pathways, simultaneously and sequentially by using a dual functional initiator. Well defined block copolymers were obtained by sequential block copolymerization first implementing ROP of l-lactide followed by ATRP of solketal acrylate. After hydrolysis of the solketal acrylate segments hydrophilic poly(2,3-dihydroxypropyl acrylate) blocks were obtained. The amphiphilic block copolymers were able to self-organize in aqueous solution. Aggregation behavior was studied by means of dynamic and static light scattering. Time dependent enzymatic and hydrolytic degradation of the poly(l-lactide) cores was detected by dynamic light scattering. If enzymatic solutions were used the degradation process proceeded faster and was completed within 4000 min.  相似文献   

14.
In this paper, nine organic compounds based on the coumarin scaffold and different substituents were synthesized and used as high-performance photoinitiators for free radical photopolymerization (FRP) of meth(acrylate) functions under visible light irradiation using LED at 405 nm. In fact, these compounds showed a very high initiation capacity and very good polymerization profiles (both high rate of polymerization (Rp) and final conversion (FC)) using two and three-component photoinitiating systems based on coum/iodonium salt (0.1%/1% w/w) and coum/iodonium salt/amine (0.1%/1%/1% w/w/w), respectively. To demonstrate the efficiency of the initiation of photopolymerization, several techniques were used to study the photophysical and photochemical properties of coumarins, such as: UV-visible absorption spectroscopy, steady-state photolysis, real-time FTIR, and cyclic voltammetry. On the other hand, these compounds were also tested in direct laser write experiments (3D printing). The synthesis of photocomposites based on glass fiber or carbon fiber using an LED conveyor at 385 nm (0.7 W/cm2) was also examined.  相似文献   

15.
N,N'‐dibutylquinacridone (DBQA) is utilized here for the first time as a high‐performance panchromatic photoinitiator for the cationic polymerization (CP) of epoxides, the free radical polymerization (FRP) of acrylates, the thiol‐ene polymerization and the synthesis of interpenetrated polymer networks (epoxide/acrylate) under violet, blue, green and yellow lights (emitted from LED at 405 nm, 470 nm, 520 nm, or 594 nm, or laser diode at 532 nm). It confers a panchromatic character to the photopolymerizable matrices. Remarkably, the proposed DBQA based photoinitiating systems exhibit quite excellent efficiency (the final monomer conversion for multifunctional monomers at room temperature can reach 62% and 50% in CP and FRP, respectively) and appear as much more powerful than the camphorquinone or Eosin‐Y containing reference systems for visible light. For green light, DBQA is much more reactive than the literature reference (Eosin‐Y) and for blue light, a good reactivity is found compared with camphorquinone. The photochemical mechanisms are studied by molecular orbital calculations, steady state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis, and electron spin resonance spin trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1719–1727  相似文献   

16.
设计合成了3种基于香豆素骨架的紫外-可见发光二极管(UV/Vis-LED)可激发的新型吡啶鎓盐光引发剂, 并研究了这3种香豆素吡啶鎓盐的构效关系及其作为单组分自由基光引发剂在丙烯酸酯体系中的光引发活性. 紫外-可见吸收光谱分析表明, 这3种香豆素吡啶鎓盐在300~400 nm区域有较强吸收. 在LED@365 nm和LED@405 nm光源辐照下, 研究了3种光引发剂的稳态光解和光聚合动力学. 研究表明, 这3种香豆素吡啶鎓盐光引发剂在相应光辐照下都具有较好的光解速率. 此外, 3种光引发剂对丙烯酸酯都具有较好的引发活性. 构效关系研究表明, 吡啶环4号位引入推电子的甲氧基会使其引发丙烯酸酯单体聚合的活性降低; 而引入吸电子的乙酰基会使其引发丙烯酸酯单体聚合的活性增加. 差示扫描量热(DSC)实验表明, 此类吡啶鎓盐光引发剂具有较好的热稳定性. 当3种光引发剂与丙烯酸单体混合时可提升体系的热稳定性; 通过电子自旋共振(ESR)证明了活性物种的产生, 并对该类引发剂的引发机理进行了探讨.  相似文献   

17.
The new functional styrenic monomer, 4-trisylmethyl styrene (TsiMS) [Tsi=trisyl=tris(trimethylsilyl)methyl], was synthesized by reacting 4-chloromethyl styrene (CMS) with trisyllithium (TsiLi) in tetrahydrofuran (THF) solvent in the presence of copper chloride (CuCl). Attempt for the free radical polymerization of TsiMS by α,α-azobis(isobutyronitrile) (AIBN) as an initiator at 70 ± 1 °C failed for several periods of times. This result showed that the trisyl group is a highly sterically hindered substituent and, subsequently, TsiMS becomes resistant for polymerization. Therefore, for preparation of new methacrylic, acrylic and dienic copolymers of TsiMS, we firstly synthesized the copolymers of CMS with different monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA) and isoprene (IP) by free radical polymerization method in toluene solution at 70 ± 1 °C using AIBN initiator to give the copolymers I-VI in good yields. The copolymer compositions were obtained using related 1H NMR spectra and the polydispersity indices of the copolymers determined using gel permeation chromatography (GPC). The trisyl groups were then covalently attached to the obtained copolymers as side chains by reaction between excess of TsiLi and benzyl chloride bonds of CMS units, to give the copolymers - in 80-92% yields. All the resulted polymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility of all the copolymers was examined in various polar and non-polar solvents. The glass transition temperature (Tg) of all copolymers was determined by differential scanning calorimetry (DSC) apparatus. The Tg value of copolymers containing bulky trisyl groups was found to increase with incorporation of trisyl groups in polymer structures. The presence of trisyl groups in polymer side chains, create new macromolecules with novel modified properties.  相似文献   

18.
A dye‐linked initiator consisting of a merocyanine dye, which has an absorption maximum at 460 nm, and a substituted bis(trichloromethyl)‐1,3,5‐triazine initiator was prepared in order to achieve an efficient photopolymerization in a visible‐light region. The spectroscopic studies clearly showed that the dye‐linked initiator exhibit a marked increase in the efficiency of fluorescence quenching than a simple mixture of the dye/initiator. These results are reasonably explained in terms of the efficiency of electron transfer between the dye and the initiator. The relative photoinitiating efficiency of dye‐linked initiators in photopolymerization of acrylate monomers was evaluated and the results clearly indicated that the dye‐linked photoinitiator exhibited a marked increase in the photoinitiating efficiency of photopolymerization of acrylates compared to a simple mixture of the dye/initiator in photopolymer coatings particularly at a lower concentration of the initiator. This was explained in terms of the active quenching sphere of the dye/initiator system. Superior photosensitivity in the linked compound at a lower concentration indicates that this would be particularly useful as a visible‐light photoinitiator in holographic‐recording photopolymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Compound CpMoI2(iPr2dad) (iPr2dad = iPrNCHCHNiPr), obtained by halide exchange from CpMoCl2(iPr2dad) and NaI, has been isolated and characterized by EPR spectroscopy, cyclic voltammetry, and X-ray crystallography. Its action as a catalyst in atom transfer radical polymerization (ATRP) and as a spin trap in organometallic radical polymerization (OMRP) of styrene and methyl acrylate (MA) monomers has been investigated and compared with that of the dichloro analogue. Compound CpMoCl2(iPr2dad) catalyzes the ATRP of styrene and MA with low efficiency factors f (as low as 0.37 for MA and ethyl 2-chloropropionate as initiator), while it irreversibly traps the corresponding growing radical chains under OMRP conditions. On the other hand, compound CpMoI2(iPr2dad) has a greater ATRP catalytic activity than the dichloro analogue and yields f = 1 for MA and ethyl 2-iodopropionate as initiator. Under OMRP conditions, it does not irreversibly trap the growing radical chains. This comparison serves to illustrate the general principle that low initiator efficiency factors, sometimes observed in ATRP, may result from the interplay of the ATRP and OMRP mechanisms, when the latter ones involves an irreversible radical trapping process.  相似文献   

20.
Styrene (S) and glycidyl methacrylate (GMA) copolymers were synthesized by atom transfer radical polymerization (ATRP) under different conditions. The effect of initiators, ligands, solvents, and temperature to the linear first-order kinetics and polydispersity index (PDI) was investigated for bulk polymerization. First-order kinetics was observed between linearly increasing molecular weight versus conversion and low polydispersities (PDI) were achieved for ethyl 2-bromo isobutyrate (EBiB) as an initiator and N,N′,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst. The copolymers with different compositions were synthesized using different in-feed ratios of monomers. Copolymers composition was calculated from 1H NMR spectra which were further confirmed by quantitative 13C{1H} NMR spectra. The monomer reactivity ratios were obtained with the help of Mayo-Lewis equation using genetic algorithm method. The values of reactivity ratios for glycidyl methacrylate and styrene monomers are rG = 0.73 and rS = 0.42, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号