首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly(ether-imide)s (III) characterized by colorless, highly solubility was synthesized from 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride(BPADA) and various fluorinated aromatic diamines (Ia-h) in DMAc via polycondensation to form poly(amic acid) (II), followed by chemical (C) and thermal (H) imidization. These polymers had inherent viscosities ranging from 0.60 to 1.3 dL/g. These polyimides were highly soluble in a variety of organic solvent such as amide-type, ether-type and chlorinated solvents. Moreover, these poly(ether-imide) films were almost colorless, with an ultraviolet-visible absorption cutoff wavelength below 390 nm and low b* value (a yellowness index) of 4.6-18.0. The III series showed strength tensile of 72-101 MPa, elongation at break of 11-25%, initial modulus of 1.5-2.0 GPa. The glass transition temperature (Tg) of IIIa-h were in the range of 202-267 °C, and the decomposition temperature above 493 °C and left 40-65% char yield at 800 °C in nitrogen. They had the lower dielectric constants of 3.39-3.72 (1 MHz) and moisture absorptions in the range of 0.11-0.40%.  相似文献   

2.
Three novel series of soluble and curable phthalonitrile-terminated oligomeric poly(ether imide)s containing phthalazinone moiety were synthesized from an excess amount of three dianhydrides and phthalazinone-based diamine, followed by reacting with 4-(3-aminophenoxy)phthalonitrile (APPh) in a two-step, one-pot reaction, respectively. The phthalonitrile oligomers containing phthalazinone moiety were cured in the presence of 4,4′-diaminodiphenylsulfone (DDS). The oligomers and the crosslinked polymers were characterized by DSC, FT-IR and elemental analysis. These phthalonitrile oligomers containing phthalazinone groups were found to be soluble in some aprotic solvents, such as chloroform, pyridine, m-cresol and N-methyl-2-pyrrolidone (NMP). The crosslinked polymers were insoluble in all solvents. The thermal properties of the oligomers and the crosslinked polymers were evaluated using DSC and TGA analysis. The phthalonitrile oligomers showed high glass transition temperatures (Tgs) in the range of 214-256 °C and high decomposition temperatures with 10% weight loss (Td10%) ranging from 523 to 553 °C. The crosslinked polymers showed excellent thermal stability with the 10% weight loss temperatures ranging from 543 to 595 °C, but did not exhibit a glass transition temperature upon heating to 350 °C.  相似文献   

3.
A series of novel fluorinated polynaphthalimides (PNIs) (2a-g) were synthesized from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and trifluoromethyl (CF3)-substituted aromatic bis(ether amine)s (1a-g) by high-temperature solution polycondensation in m-cresol using isoquinoline as catalyst. Almost all the PNIs were readily soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) and could be solution-cast to transparent and tough films with high tensile strengths. The PNIs exhibited high thermal stability, with glass-transition temperatures of 262-383 °C, 10% weight loss temperatures above 528 °C in nitrogen or air, and char yields at 800 °C in nitrogen higher than 50%. In comparison with analogous PNIs without the -CF3 substituents, these fluorinated PNIs revealed an enhanced solubility and better film-forming capability.  相似文献   

4.
A series of new poly(amine-hydrazide)s I were prepared from the dicarboxylic acid 4,4′-dicarboxy-4″-methyltriphenylamine with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. Polymers I were readily soluble in many common organic solvents, and could be solution cast into transparent, tough, and flexible films with good mechanical properties. Differential scanning calorimetry (DSC) indicated that the hydrazide polymers had Tg’s in the range of 222-223 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300-400 °C. The resulting poly(amine-1,3,4-oxadiazole)s II exhibited Tg’s in the range of 269-283 °C, 10% weight-loss temperatures in excess of 511 °C, and char yield at 800 °C in nitrogen higher than 63%. These poly(amine-hydrazide)s I exhibited strong UV-Vis absorption bands at 351-355 nm in NMP solution. Their photoluminescence spectra in NMP solution and film showed maximum bands around 459-461 nm in the blue region for I series. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine-hydrazide)s I prepared by casting polymer solution onto an indium-tin oxide (ITO)-coated glass substrate exhibited one reversible oxidation redox couples at 1.32-1.33 V vs. Ag/AgCl in acetonitrile solution. All obtained poly(amine-hydrazide)s I revealed excellent stability of electrochromic characteristics, changing color from original pale yellowish to blue.  相似文献   

5.
A new dicarboxylic acid chloride (2) bearing three preformed imide rings was synthesized by treating N-(3,5-diaminophenyl)phthalimide with trimellitic anhydride followed by refluxing with thionyl chloride. A novel family of aromatic poly(ester-imide)s with inherent viscosities of 0.27-0.35 dl g−1 were prepared from 2 with various bisphenols such as resorcinol (3a), hydroquinone (3b), 2,2′-dihydroxybiphenyl (3c), 4,4′-dihydroxybiphenyl (3d), bisphenol-A (3e), 2,2′-dimethyl-4,4′-dihydroxybiphenyl (3f), 1,5-dihydroxynaphthalene (3g), 2,7-dihydroxynaphthalene (3h), and 2,2′-dihydroxy-1,1′-binaphthyl (3i) by high-temperature solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher. All of the resulted polymers were fully characterized by FT-IR and NMR spectroscopy and elemental analyses. The poly(ester-imide)s exhibited excellent solubility in some polar organic solvents. From differential scanning calorimetry, the polymers showed glass-transition temperatures between 259 and 353 °C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis and the 10% weight loss temperatures of the poly(ester-imide)s were found to be in the range between 451 and 482 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide-angle X-ray diffraction.  相似文献   

6.
Synthesis of aromatic poly(ether ketone) (3) with a narrow molecular weight distribution (Mw/Mn) was investigated via polycondensation. Mns of 3 could be controlled varying the feed ratio of monomer (1) and initiator (2) maintaining relatively narrow Mw/Mns (<1.3). The kinetics of polycondensation obeyed a first-order relationship between polycondensation time and -(1/[2]0) ln([1]/[1]0), and the rate of polycondensation was estimated as 2.57 mol−1 L h−1. MALDI-TOF mass analysis of 3 indicated that polycondensation should proceed via chain growth manner to give 3 having an initiator unit in each chain end.  相似文献   

7.
A new tetraimide-dicarboxylic acid (TIDA) I was synthesized starting from 3-aminobenzoic acid (m-ABA), 4,4′-oxydiphthalic anhydride (ODPA), and 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (BAFPB) at a 2:2:1 molar ratio in N-methyl-2-pyrrolidone (NMP). A series of organosoluble, light-colored poly(amide-imide-imide)s (PAII, IIIa-j) was prepared by triphenyl phosphite-activated polycondensation from the tetraimide-diacid I with various aromatic diamines (IIa-j). All the polymers were readily soluble in a variety of organic solvents such as NMP, N,N-dimethyl acetamide (DMAc), dimethyl sulfoxide, and even in less polar m-cresol and pyridine. Polymer films cast from DMAc had the cutoff wavelengths between 374 and 384 nm and had the b values in the range of 14.8-30.2. Polymers IIIa-j afforded tough, transparent, and flexible films, which had tensile strengths ranging from 87 to 103 MPa, elongations at break from 11% to 37%, and initial moduli from 1.9 to 2.3 GPa. The glass transition temperatures of these polymers were in the range of 242-274 °C. They had 10% weight loss temperature above 526 °C and showed the char yield more than 55% residue at 800 °C in nitrogen.  相似文献   

8.
A series of novel rigid poly(bisbenzothiazole-urea)s (PBTUs III) containing bulky pendant groups were synthesized from 2,2-diaminodibenzothiazoles and aromatic diisocyanates conveniently in the mild condition. The inherent viscosity, solubility, thermal stability, morphology, mechanical and photophysical properties of them were investigated and compared in detail. The inherent viscosities were in the range of 0.58-0.73 dL/g. All of the polymers exhibited excellent solubility in various polar organic solvents. They also showed good thermal stability and mechanical properties. The decomposition temperatures at 10% weight loss were in the range of 368-431 °C in nitrogen. All the PBTUs III were amorphous. Tensile strength of PBTUs III showed the range from 85 to 98 MPa. Compared with poly(benzothiazole)s, all the PBTUs III had the larger optical bandgap and lower photoluminescence quantum yields.  相似文献   

9.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

10.
A series of sulfonated block poly(ether ether ketone)s with different sulfonic acid group clusters were successfully synthesized by nucleophilic displacement condensation. Membranes were accordingly cast from their DMSO solutions, and fully characterized by determining the ion-exchange capacity, water uptake, proton conductivity, dimensional stabilities and mechanical properties. The experimental results showed that the main properties of the membrane can be tailored by changing the cluster size of sulfonic acid groups. The membrane of block-7c(40) has good mechanical, oxidative and dimensional stabilities together with high proton conductivity (5.09 × 10−2 S cm−1) at 80 °C under 100% relative humidity. The membranes also possess excellent thermal and dimensional stabilities. These polymers are potential and promising proton conducting membrane material for PEM full cell applications.  相似文献   

11.
Two series of new aromatic poly(ester-imide)s were prepared from 1,5-bis(4-aminobenzoyloxy)naphthalene (p-1) and 1,5-bis(3-aminobenzoyloxy)naphthalene (m-1), respectively, with six commercially available aromatic tetracarboxylic dianhydrides via a conventional two-stage synthesis that included ring-opening polyaddition to give poly(amic acid)s followed by chemical imidization to polyimides. The intermediate poly(amic acid)s obtained in the first stage had inherent viscosities of 0.41-0.84 and 0.66-1.37 dl/g, respectively. All the para-series and most of the meta-series poly(ester-imide)s were semicrystalline and showed less solubility. Two of the meta-series poly(ester-imide)s derived from less rigid dianhydrides were amorphous and readily soluble in polar aprotic solvents, and they could be solution-cast into transparent and tough films with good mechanical properties. The meta-series polymers derived from rigid dianhydrides were generally semicrystalline and showed less solubility. Except for one example, the meta-series poly(ester-imide)s displayed discernible Tgs in the range 239-273 °C by DSC. All of these two series poly(ester-imide)s did not show significant decomposition below 450 °C in nitrogen or in air.  相似文献   

12.
Reaction of guaiazulene (1) with o-formylbenzoic acid (2) in diethyl ether in the presence of hexafluorophosphoric acid at 25 °C for 90 min gives the corresponding monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluorophosphate (3), quantitatively, which upon treatment with aq NaHCO3 leads to 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5) in 96% isolated yield. Similarly, reaction of 1 with 2 in methanol under the same conditions as the above reaction affords two kinds of inseparable monocarbenium-ion compounds, 3 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4) with an equilibrium between them, which upon reaction with a solution of NaBH4 in ethanol at 25 °C for 30 min leads to 5 in 46% isolated yield and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6) in 37% isolated yield. Along with the 1H and 13C NMR spectral properties of a solution of 5 in trifluoroacetic acid-d1 at 25 °C, whose molecular structure is converted to a ca. 1:1 equilibrium mixture of 7 possessing a partial structure of the 3-guaiazulenylmethylium-ion and 8 possessing a partial structure of the 3-guaiazulenium-ion, comparative studies on the 1H and 13C NMR spectral properties of 7 and 8 with those of the monocarbenium-ion compound, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A), 5, and 6 are reported. From these NMR studies, it can be inferred that the positive charge of the 3-guaiazulenylmethylium-ion part of 7 apparently is transferred to the seven-membered ring, generating a resonance form of the 3-guaiazulenylium-ion structure η′, and the same result can be inferred for the previously documented monocarbenium-ion compounds A-I. Moreover, referring to a comparative study on the C-C bond lengths of A observed by the X-ray crystallographic analysis with those of the optimized (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium-ion structure for A calculated by a WinMOPAC (Ver. 3.0) program using PM3, AM1, or MNDOD as a semiempirical Hamiltonian, the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3 calculated using PM3 is described.  相似文献   

13.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

14.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

15.
A new class of optically active poly(amide-imide)s based on an α-amino acid was synthesized via direct polycondensation reaction of different diisocyanates with a chiral diacid monomer. The step-growth polymerization reactions of N-trimellitylimido-S-valine (TISV) (1) with 4,4′-methylene-bis(4-phenylisocyanate) (MDI) (2) was performed under microwave irradiation, as well as solution polymerization under graduate heating and reflux conditions. The optimized polymerization conditions for each method were performed with tolylene-2,4-diisocyanate (TDI) (3), hexamethylene diisocyanate (HDI) (4), and isophorone diisocyanate (IPDI) (5) to produce optically active poly(amide-imide)s via diisocyanate route. The resulting polymers have inherent viscosities in the range of 0.02-1.10 dL/g. Decomposition temperatures for 5% weight loss (T5) occurred above 300 °C (by TGA) in nitrogen atmospheres. These polymers are optically active, thermally stable and soluble in amide-type solvents. Some structural characterization and physical properties of this new optically active poly(amide-imide)s are reported.  相似文献   

16.
Wittig reaction of 3-[4-(dimethylamino)phenyl]propanal (5) with (3-guaiazulenylmethyl)triphenylphosphonium bromide (4) in ethanol containing NaOEt at 25 °C for 24 h under argon gives the title (2E,4E)-1,3-butadiene derivative 6E in 19% isolated yield. Spectroscopic properties, crystal structure, and electrochemical behavior of the obtained new extended π-electron system 6E, compared with those of the previously reported (E)-2-[4-(dimethylamino)phenyl]-1-(3-guaiazulenyl)ethylene (12), are documented. Furthermore, reaction of 6E with 1,1,2,2-tetracyanoethylene (TCNE) in benzene at 25 °C for 24 h under argon affords a new Diels-Alder adduct 8 in 59% isolated yield. Along with spectroscopic properties of the [π4+π2] cycloaddition product 8, the crystal structure, possessing a cis-3,6-substituted 1,1,2,2-tetracyano-4-cyclohexene unit, is shown. Moreover, reaction of 6E with (E)-1,2-dicyanoethylene (DCNE) under the same reaction conditions as the above gives no product; however, this reaction in p-xylene at reflux temperature (138 °C) for four days under argon affords a new Diels-Alder adduct 9 in 54% isolated yield. Although reaction of 6E with DCNE in toluene at reflux temperature (110 °C) for four days under argon provides 9 very slightly, reaction of 6E with dimethyl acetylenedicarboxylate (DMAD) in toluene at reflux temperature for two days under argon yields a new Diels-Alder adduct 10, in 58% isolated yield, which upon oxidation with MnO2 in CH2Cl2 at 25 °C for 1 h gives 11, converting a (CH3)2N-4″ into CH3NH-4″ group, in 37% isolated yield. The crystal structure of 11 supports the molecular structure 10 possessing a partial structure cis-3,6-substituted 1,2-dimethoxycarbonyl-1,4-cyclohexadiene. The title basic studies on the above are reported in detail.  相似文献   

17.
Polycarbohydrate macromonomers with different degrees of polymerization (DP), that is, end-functionalized (1 → 6)-2,5-anhydro-3,4-di-O-ethyl-d-glucitols with 4-ethynylbenzoyl groups (macromonomer 2: DP = 6.6, and macromonomer 3: DP = 9.5) were synthesized. The copolymerizations of these macromonomers and phenylactylene (PA) were carried out in various molar ratios to give poly(phenylacetylene)s bearing a polycarbohydrate ionophore as the graft chain with various grafting rates, poly-(2x-co-PAy) and poly-(3x-co-PAy). These polymers showed split-type circular dichroism (CD) spectra in the long absorption region of the conjugated polymer backbones (280-500 nm). This indicated that poly-(2x-co-PAy) and poly-(3x-co-PAy) had predominantly one-handed helical conformations in the backbones. The CD spectral patterns of these polymers were inverted in the presence of metal cationic guest molecules. On the other hand, control experiments using poly(phenylacetylene)s bearing a monocarbohydrate (poly-(4x-co-PAy)) and metal cations did not show such a CD spectral inversion. These results clearly indicated that the chiroptical switching of the poly(phenylacetylene)s bearing polycarbohydrate ionophore was attributable to the host-guest complexation of the polycarbohydrate ionophore with metal cations.  相似文献   

18.
A new-type of sulfide containing diacid (1,1′-thiobis(2-naphthoxy acetic acid)) was synthesized from 2-naphthol in three steps. Reaction of 2-naphthol with sulfur dichloride afforded 1,1′-thiobis(2-naphthol) (TBN). 1,1′-Thiobis(2-naphthoxy acetic ester) (TBNAE) was successfully synthesized by refluxing the TBN with methylcholoroacetate in the presence of potassium carbonate. The related diacid was synthesized by basic solution reduction of TBNAE. The obtained diacid was fully characterized and used to prepare novel thermally stable poly(sulfide ether amide)s via polyphosphorylation reaction with different aromatic diamines. The properties of these new polyamides were investigated and compared with similar polyamides. These polyamides showed inherent viscosities in the range of 0.39-0.87 dL g−1 in N,N-dimethylacetamide (DMAc) at 30 °C and at a concentration of 0.5 g dL−1. All the polyamides were readily soluble in a variety of polar solvents such as DMAc and tetrahydrofuran (THF). These polyamides showed glass transition temperature (Tg) between 241-268 °C. Thermogravimetric analysis measurement revealed the decomposition temperature at 10% weight loss (T10) ranging from 441- 479 °C in argon atmosphere.  相似文献   

19.
An imide ring-containing diamide-dianhydride, N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride (1) was prepared by the reaction of trimellitic anhydride chloride with N-(3,5-diaminophenyl)phthalimide in a medium consisting of methylene chloride and pyridine. A series of new alternating aromatic poly(amide-imide)s having inherent viscosities of 0.26-0.37 dl/g was synthesized using a two-step poly(amic-acid) precursor method. A reference monomer, 1,3-bis(3,4-dicarboxybenzamido)benzene dianhydride (2) without the phthalimido pendant group attached to the polymer main chain was prepared in order to study the structure-property relationship. In this case, the structure effects on some properties of the resulting poly(amide-imide)s including crystallinity, solubility, thermal stability, and film flexibility could be easily clarified. A diamide-triimide (3) as a model compound was also synthesized by the reaction of new dianhydride 1 with aniline to compare the characterization data as well as to optimize the polymerization conditions. The resulting polymers were fully characterized by FT-IR, UV-visible and 1H NMR spectroscopy. Most of the polymers showed an amorphous nature and were readily soluble in a variety of organic solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), and pyridine. The glass-transition temperatures of these polymers were recorded between 301 and 371 °C. All polymers showed no significant weight loss below 500 °C in nitrogen, and the decomposition temperatures at 10 wt.% loss range from 506 to 543 °C. The films of the resulting poly(amide-imide)s could be cast from their NMP solutions, and the transparency and flexibility of them were investigated.  相似文献   

20.
Trimellitic anhydride acid chloride (2) was obtained by the reaction of trimellitic anhydride (1) and excess amount of thionyl chloride. The acid chloride was reacted with 4,4′-diaminodiphenyl ether (3), and produced the monomer 4. Anthracene-9-carboxaldehyde (5) was reacted with sulfuryl chloride to produce anthracene-9-carboxylic acid chloride (6) in a quantitative yield. Through the reaction of 6 and 2,4,6-triamino-1,3,5-triazine (7), the monomer 8 was produced in high yield. Two monomers were characterized by 1H NMR and FT-IR spectroscopy, and then were used in the polymerization reaction. A new facile and rapid polycondensation reaction of the two monomers was performed by using a domestic microwave oven. The polymerization reaction proceeded rapidly, compared with the conventional solution polycondensation and was completed within 10 min, producing a photoactive poly(amide-imide) in a quantitative yield. The resulting polymer was characterized by IR, 1H NMR and TGA techniques. Thermogravimetric analysis indicated that polymer 9 was thermally stable in nitrogen atmosphere. In addition the initial decomposition temperature, 5% and 10% weight loss (T5, T10) were 284, 356 and 408 °C. The residual weight percent at 700 °C was 51.5%, which shows it is moderately thermally stable. Fluorescence properties of polymer 9 were investigated in several solvents. The ideal concentration of each case was determined by fluorescence self quenching phenomena. Also the self quenching mechanism was studied according to the specific behavior of the polymer in different solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号