首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly(o-methoxyaniline) (PMA)/Na+-montmorillonite (MMT) clay nanocomposite (Na+-PCN) materials have been successfully prepared by in situ emulsion polymerization in the presence of inorganic nanolayers of hydrophilic Na+-MMT clay with DBSA and APS as surfactant and initiator, respectively. The as-synthesized Na+-PCN materials were characterized by Fourier-transformation infrared (FTIR) spectroscopy, wide-angle powder X-ray diffraction (XRD) and transmission electron microscopy (TEM).Na+-PCN materials in the form of coatings with low loading of Na+-MMT clay (e.g., 5 wt.%, CLMA5) on cold rolled steel (CRS) were found much superior in corrosion protection over those of neat PMA based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and impedance spectroscopy in 5 wt.% aqueous NaCl electrolyte. The molecular weight of PMA extracted from Na+-PCN materials and net PMA were determined by gel permeation chromatography (GPC) with NMP as eluant. Effects of material composition on the optical properties, electrical conductivity, thermal stability and surface morphology of neat PMA and/or a series of Na+-PCN materials, in the form of solution, powder-pressed pellet and fine powder, were also studied by ultraviolet-visible spectra, four-point probe technique, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively.  相似文献   

2.
The effects of 2‐hydroxyalkyl methacrylates (HEMA and HPMA) on the styrene miniemulsion polymerizations stabilized by SDS/lauryl methacrylate (LMA) or SDS/stearyl methacrylate (SMA) were investigated. A mixed mode of particle nucleation (monomer droplet nucleation and homogeneous nucleation) is operative during polymerization. Homogeneous nucleation plays a crucial role in the polymerizations stabilized by SDS/LMA, whereas monomer droplet nucleation becomes more important in the polymerizations stabilized by SDS/SMA. The polymerization kinetics is insensitive to the type of 2‐hydroxyalkyl methacrylates, but the difference in the relative importance of monomer droplet nucleation and homogeneous nucleation is detected. Incorporation of 1‐pentanol (C5OH) into the reaction mixture also shows a significant influence on the polymerizations stabilized by SDS/LMA or SDS/SMA. This is attributed to the formation of a close‐packed structure of SDS and C5OH on the droplet surface, which acts as a barrier to the incoming oligomeric radicals. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3188–3199, 2000  相似文献   

3.
In this study, we present the first practical evaluation for the corrosion protection effect of waterborne polyurethane (WPU)/Na+-montmorillonite (Na+-MMT) clay nanocomposite coating. Typically, a series of waterborne polyurethane (WPU)/Na+-montmorillonite (Na+-MMT) clay nanocomposite materials have been successfully prepared by effectively dispersing the inorganic nanolayers of commercially purified Na+-MMT clay in WPU matrix through direct aqueous solution dispersion technique. First of all, WPU was prepared by polymerizing PCL, DMPA and H12MDI, followed by characterized by nuclear magnetic resonance (1H NMR), Fourier transform infrared (FTIR) and gel permeation chromatography (GPC). Subsequently, the as-prepared PU/Na+-MMT clay nanocomposite (Na+-PCN) materials were subsequently characterized by FTIR, X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM).PCN materials in the form of coating at low Na+-MMT clay loading up to 3 wt% coated on the cold-rolled steel (CRS) coupons were found to exhibit superior corrosion protection effect over those of neat WPU based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and impedance in 5 wt% aqueous NaCl electrolyte. Effects of the material composition on the gas permeability, thermal stability and optical clarity of neat WPU along with a series of Na+-PCN materials, in the form of coating and free-standing film, were also studies by gas permeability analyzer (GPA), thermogravimetric (TGA), differential scanning calorimetry (DSC) and ultraviolet UV-visible transmission spectroscopy, respectively. As control experiments, a series of PU/organo-MMT nanocomposite (denoted by organo-PCN) materials were also prepared for comparative studies.  相似文献   

4.
A series of novel advanced environmentally friendly anticorrosive materials have been successfully prepared by effectively dispersing nanolayers of Na+-montmorillonite (Na+-MMT) clay into water-based polyacrylate latex (i.e., vinyl acrylic terpolymers). First of all, a polyacrylate latex was synthesized through co-polymerizing organic monomers of MMA, BMA and styrene (St) using conventional emulsion polymerization technique with SDS, 1-pentanol and KPS as surfactant, co-surfactant and initiator, respectively. Subsequently, the commercial purified hydrophilic Na+-MMT was effectively dispersing into the polyacrylate latex through the direct solution dispersion technique.The as-prepared neat polyacrylate and the series of water-based polyacrylate/Na+-MMT clay nanocomposite (Na+-PCN) materials were subsequently characterized by FTIR spectroscopy, XRD, TEM and GPC. The water-based Na+-PCN materials loaded with low content of Na+-MMT when in the form of coating on the cold rolled steel (CRS) coupons was found to be remarkably superior in anticorrosion efficiency over those of neat polyacrylate based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current, and impedance spectroscopy in saline. Effect of material composition on the molecular barrier, optical clarity and thermal stability were also studied by molecular permeability analysis, ultraviolet-visible transmission spectra, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. Organo-PCN materials were also prepared as a control experiment for comparative studies.  相似文献   

5.
Porous PMMA/Na+–montmorillonite (MMT) cation-exchange membranes were successfully prepared by entrapment method in this study. One approach (simple mixing) was to mix commercial PMMA polymer with Na+–MMT clays in solvent for membrane preparation (Membrane A). The other approach (emulsion polymerization) was to synthesize the PMMA/Na+–MMT polymer composite via emulsion polymerization first, followed by membrane casting (Membrane B for Kunipia F clays and Membrane C for PK-802 clays). Membrane morphology and properties were characterized. The thermogravimetric analysis (TGA) verified the near complete incorporation of feed Na+–MMT clays in the PMMA/Na+–MMT composite membranes, while X-ray diffractograms (WXRD) exhibited the slightly enlarged interlayer spacing of Na+–MMT. The range of cation-exchange capacity (CEC) was 9–32 μequiv./47 mm disc. For batch cationic dye adsorption, the best performance was achieved by Membrane B with feed Na+–MMT/MMA (M/P) ratio (w/w) = 0.5 and Membrane C with feed M/P = 0.6, where about 95% Methyl violet adsorption was attained in 2 h. The optimal desorption solution was 1 M KSCN in 80% methanol and its related dye desorption efficiency was 92%. In the flow process using one piece of 47 mm disc of Membrane B (M/P = 0.5), dye solution was recirculated for 6 h and ≥85% dye could be removed. Higher than 94% of dye was desorbed at 1 or 4 mL/min, and the membrane regenerability was proved by successfully performing three consecutive cycles.  相似文献   

6.
A series of solvent mediators containing a phosphoryl (PO) group, such as tris(2-ethylhexyl)phosphate, bis(2-ethylhexyl) 2-ethylhexylphosphonate, 2-ethylhexyl bis(2-ethylhexyl)phosphinate, and tris(2-ethylhexyl)phosphine oxide, were used to construct serotonin-selective membrane electrodes. We found that replacing the alkoxy groups attached to phosphorus atoms in PO groups with alkyl groups strengthened the response of the electrode to serotonin, suppressing remarkably interference from inorganic cations, such as Na+. Thus, an electrode combining tris(2-ethylhexyl)phosphine oxide with an ion-exchanger, sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate, gave a detection limit of 9 × 10−6 M with a slope of 55.2 mV per concentration decade in physiological saline containing 150 mM NaCl and 10 mM NaH2PO4/Na2HPO4 (pH 7.4). This is the best detection limit of any serotonin-selective electrode developed to date. The selectivity of this electrode for serotonin was over 103 times that for inorganic cations, such as Na+ and K+, and lipophilic quaternary ammonium ions, such as acetylcholine and (C2H5)4N+. Using the electrode, we measured the amount of serotonin released from platelets and found that the results agreed well with those obtained by a conventional fluorimetric assay of serotonin.  相似文献   

7.
The effects of various parameters on the dodecyl methacrylate (DMA) or stearyl methacrylate (SMA) containing styrene miniemulsion polymerizations were investigated. These parameters include the type of initiators [2,2′-azobisisobutyronitrile (AIBN) vs. sodium persulfate (SPS)], the size of the homogenized monomer droplets, the AIBN concentration, and the SDS concentration. A small quantity of a water-insoluble dye was also incorporated into the polymerization system to study the related particle nucleation mechanisms. The oil-soluble AIBN promotes nucleation in the monomer droplets, whereas homogeneous nucleation predominates in the reaction system with the water-soluble SPS. Homogeneous nucleation, however, cannot be ruled out in the DMA or SMA containing polymerizations with AIBN as the sole initiator. Increasing the level of AIBN or SDS enhances formation of particle nuclei via homogeneous nucleation. The reaction kinetics is primarily controlled by the competitive events of monomer droplet nucleation and homogeneous nucleation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2537–2550, 1999  相似文献   

8.
The comparative studies on the anionic polymerization of β-butyrolactone (BL) initiated with various salts of acetic acid have revealed strong sensitivity of the reaction rate on solvent polarity (benzene, THF, DMSO) and size of counterion. It was found that the polymerization rate in THF depends on the size of counterion and the type of macrocyclic ligand; it decreases in the following order: K+/Kryptofix® 222 ≈TBA+ > K+/18C6 > Na+/18C6 > Na+/15C5 > K+. It was also shown that the anionic polymerization of BL initiated with carboxylic acid salts depends strongly on the solvent polarity. In the polymerization initiated by acetate anions with a large counterion, the high-polar solvent as DMSO affects unfavorably the reaction rate, however, when a small counterion is applied, the opposite tendency is observed.  相似文献   

9.
For the isocratic ion chromatography (IC) separation of low-molecular-mass organic acids and inorganic anions three different anion-exchange columns were studied: IonPac AS14 (9 μm particle size), Allsep A-2 (7 μm particle size), and IC SI-50 4E (5 μm particle size). A complete baseline separation for all analyzed anions (i.e., F, acetate, formate, Cl, NO2, Br, NO3, HPO42− and SO42−) in one analytical cycle of shorter than 17 min was achieved on the IC SI-50 4E column, using an eluent mixture of 3.2 mM Na2CO3 and 1.0 mM NaHCO3 with a flow rate of 1.0 mL min−1. On the IonPac AS14 column, it was possible to separate acetate from inorganic anions in one run (i.e., less than 9 min), but not formate, under the following conditions: 3.5 mM Na2CO3 plus 1.0 mM NaHCO3 with a flow rate of 1.2 mL min−1. Therefore, it was necessary to adapt a second run with a 2.0 mM Na2B4O7 solution as an eluent under a flow rate of 0.8 mL min−1 for the separation of organic ions, which considerably enlarged the analysis time. For the Allsep A-2 column, using an eluent mixture of 1.2 mM Na2CO3 plus 1.5 mM NaHCO3 with a flow rate of 1.6 mL min−1, it was possible to separate almost all anions in one run within 25 min, except the fluoride-acetate critical pair. A Certified Multianion Standard Solution PRIMUS for IC was used for the validation of the analytical methods. The lowest RSDs (less than 1%) and the best LODs (0.02, 0.2, 0.16, 0.11, 0.06, 0.05, 0.04, 0.14 and 0.09 mg L−1 for F, Ac, For, Cl, NO2, Br, NO3, HPO42− and SO42−, respectively) were achieved using the IC SI-50 4E column. This column was applied for the separation of concerned ions in environmental precipitation samples such as snow, hail and rainwater.  相似文献   

10.
Styrene microemulsion polymerizations with different short‐chain alcohols [n‐CiH2i+1OH (CiOH), where i = 4, 5, or 6] as the cosurfactant were investigated. Sodium dodecyl sulfate and sodium persulfate (SPS) were used as the surfactant and initiator, respectively. The desorption of free radicals out of latex particles played an important role in the polymerization kinetics. An Arrhenius expression for the radical desorption rate coefficient was obtained from the polymerizations at temperatures of 50–70 °C. The polymerization kinetics were not very sensitive to the alkyl chain length of alcohols compared with the temperature effect. The maximal polymerization rate in decreasing order was C6OH > C4OH > C5OH. This was related to the differences in the water solubility of CiOH and the structure of the oil–water interface. The feasibility of using a water‐insoluble dye to study the particle nucleation mechanisms was also evaluated. The parameters chosen for the study of the particle nucleation mechanisms include the cosurfactant type (CiOH), the SPS concentration, and the initiator type (oil‐soluble 2,2′‐azobisisobutyronitrile versus water‐soluble SPS). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3199–3210, 2001  相似文献   

11.
For high performance waterborne coatings usually polymer latexes with low emulsifier content are more preferred. Although polymer/clay nanocomposites offer improved properties, it is difficult to produce clay based nanocomposite latexes containing low emulsifier due to the stabilization problems especially caused by organoclays. Present study deals with the preparation of a tBA/BA/MAA ternary copolymer/clay nanocomposite containing 3 wt.% sodium montmorillonite (Na+-MMT) via seeded emulsion polymerization. Experimentally it was observed that even the usage of hydrophilic clay caused stabilization problem and a certain amount of emulsifier (>1 wt.%) was necessary to obtain stable latexes. In addition, the usage of a low molecular weight water soluble polymer as steric barrier was found to increase the stability of system. Obtained nanocomposite latex showed fine particle size diameter (127 nm) and very narrow size distribution (PDI = 0.06). The WAXD and TEM investigations indicated that a mostly exfoliated nanocomposite was obtained. Thermal analyses (DSC, DMTA and TGA) showed that there was no change at Tg of the copolymer while very high improvement was obtained for elastic modulus and a slight increase in thermal stability. According to the rheological measurements, the nanocomposite latex showed a higher low shear viscosity, a stronger shear thinning behavior and an improved physical stability in comparison to the reference latex.  相似文献   

12.
In this work, nanoporous sodium montmorillonite clay (Na+-MMT) was used as a support for the immobilization of 1-methyl-3-(trimethoxysilylpropyl)-imidazolium hydrogen sulfate. The Na+-MMT chemical modification ([Na+-MMT-[pmim]HSO4) was confirmed by a variety of techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy and potentiometric titration. The catalytic performance of this immobilized acidic ionic liquid was probed for the N-formylation of a variety of amines using formic acid under solvent-free conditions. This reagent is also useful for the formylation of benzylic alcohols. The procedure gave the products in excellent yields in very short reaction times. Also, this catalyst can be reused ten times without loss of its catalytic activity.  相似文献   

13.
A low-molecular-weight liquid polybutadiene (LPB) is employed as the sole co-stabilizer in miniemulsion polymerization of styrene in present work. Results indicate that the LPB can be used as an effective co-stabilizer to retard the diffusional degradation of monomer droplets in miniemulsion system and get stable miniemulsions. When the miniemulsions were initiated, particle formation occurred predominantly by monomer droplet nucleation. Moreover, the effects of various reaction parameters on the polymerization kinetics and the nucleation mechanisms were also investigated. These parameters include the level of LPB ([LPB]) and the concentrations of SDS ([SDS]) and potassium persulfate ([KPS]). It is shown that the polymerization rate indicates little dependence on [LPB], while increases with increasing [SDS] and [KPS]. Competition between droplet nucleation and homogeneous nucleation occur in the course of polymerization, but droplet nucleation becomes more important by increasing [LPB] or decreasing [SDS]. Furthermore, the result that the particle size is rather insensitive to changes in [KPS] provides the most compelling evidence for the dominant droplet nucleation.  相似文献   

14.
Initiation of polymerization in styrene oil-in-water microemulsions by water-soluble potassium persulfate of oil-soluble 2,2′-azobis-(2-methyl butyronitrile) at 70°C gave stable latexes which were bluish and less translucent than the original microemulsions. The effects of initiator concentration, polymerization temperature, and monomer concentration on the kinetics, particle size distributions, and molecular weight distributions were investigated. The kinetics of polymerization were measured by dilatometry. In all cases, the polymerization rate shows only two intervals, which increased to a maximum and then decreased. There was no apparent constant rate period and no gel effect. A longer nucleation period was found for polymerizations initiated by potassium persulfate as compared to 2,2′-azobis-(2-methyl butyronitrile). The small latex particle size (20–30 nm) and high polymer molecular weight (1–2 × 106) implies that each latex particle consists of two or three polystyrene molecules. The maximum polymerization rate and number of particles varied with the 0.47 and 0.40 powers of potassium persulfate concentration, and the 0.39 and 0.38 powers of 2,2′-azobis-(2-methyl butyronitrile) concentration, respectively. This is consistent with the 0.4 power predicted by Smith–Ewart Case 2 kinetics. Microemulsion polymerizations of styrene–toluene mixtures at the same oil-water phase ratio gave lower polymerization rates and lower molecular weights, but the same latex particle size as with styrene alone. A mechanism is proposed, which comprised initiation and polymerization in the microemulsion droplets, by comparing the kinetics of microemulsion polymerization with conventional emulsion and miniemulsion polymerization systems.  相似文献   

15.
Hollow polymer particles with multiple holes in the shell were prepared by aqueous microsuspension polymerization of micrometer-sized, monodisperse divinylbenzene/n-hexadecane droplets in the presence of sodium dodecyl sulfate (SDS) at concentrations above 4 mM utilizing the Self-assembling Phase-Separated Polymer (SaPSeP) method developed by the authors. The total surface area of the holes per particle increased with an increase in the SDS concentration. At [SDS] = 10 mM, “flower-like” non-spherical particles were formed. Part CCCXV of series “Studies on Suspension and Emulsion”  相似文献   

16.
Thermal analysis of the products resulted during crystallization of ETS-10 by using starting co gels with molar composition 5.0 Na2O-3.0 KF-TiO2-6.4 HCl-TAABr-7.45 SiO2-197.5 H2O, where tetralkylammonium (TAA) are tetramethyl (TMA), tetraethyl (TEA), tetrapropyl (TPA) and tetrabutylammonium (TBA), was performed. The effect of TAA+ cations (ionic radius in hydrated forms, shapes and hydrophilic/hydrophobic character) on the crystallization of ETS-10 is evident from the induction time, ti (TMA+ ? TEA+ < TPA+ < TBA+), the rate of crystallization, R (TMA+ < TEA+ < TPA+ < TBA+), morphology and size of crystallites. Organic cations play a “pore filling” role rather than as a “structure-directing” agent. The relatively flexible molecules of the symmetric tetraalkylammonium cations mixed with alkali cations (Na+, K+) participate directly at prenucleation and nucleation steps by their interaction with the silicate and titanate in aqueous colloidal dispersion.  相似文献   

17.
Normal-phase HPLC and hydrophilic interaction HPLC (HILIC) were investigated for the separation of selenometabolites in a water extract of Se-rich yeast prior to their detection by ICP-MS and identification by electrospray MS/MS. The targeted fraction was a low-abundant fraction co-eluting with salt and sulfur analogues in size-exclusion chromatography which has so far been inaccessible to Se speciation studies. The optimization of the separation conditions resulted in the highest separation efficiency when HILIC was used and elution was carried out isocratically with a low concentration ammonium acetate buffer (1 mM ammonium acetate/10 mM acetic acid) in 80% acetonitrile. Out of 15 peaks observed with the Se-specific ICP-MS detection 12 was identified by electrospray Q-TOF MS/MS (2,3-dihydroxypropionyl (DHP)-Se-methylselenocysteine [M+H]+: 272, Se-methyl-γ-glutamyl-selenocysteinylglycine dioxide [M+H]+: 402, γ-glutamyl-Se-methylselenocysteine [M+H]+: 313; isomers of γ-glutamylselenocystathionine [M+H]+: 400; Se-methyl-selenoglutathione [M+H]+: 370, isomers of N-acetylselenocystathionine [M+H]+: 313, 2,3-DHP-selenohomolanthionine [M+H]+: 373, isomers of 2,3-DHP-selenocystathionine [M+H]+: 359, 2,3-DHP-selenolanthionine [M+H]+: 345 and selenohomolanthionine [M+H]+: 285).  相似文献   

18.
 The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0∝[I]0.71[S]0.23.The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methylmethacrylate) decreased as the polymerization temperature,[I]and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.  相似文献   

19.
Chiral indanyl substituted tetra-armed cyclens (TAC) formed octadentate complexes with Na+. Since their four side arms stand up and are bundled to form quadruplicated helical structures, they can have Δ- or Λ-types enantiomers based on complex helicity. In this study, TAC-imprinted polymers were prepared using an ion-pair complex of the sodium salt of (S)-indanyl substituted TAC (TAC(S)) and 2-sulfoethyl methacrylate as a template, and ethylene glycol dimethacrylate as a cross-linker. Affinity of the obtained polymers for the TAC Na+ complexes was evaluated chromatographically and the imprinted polymer gave longer retention time for the template than that for its antipode where the separation factor was given to be 1.29-1.45 under the NaOH concentrations of 10-25 mM in the eluent. These results indicate that the imprinted polymer could discriminate helix structures of TAC Na+ complexes.  相似文献   

20.
A series of composite and nanocomposite hydrogels were synthesized by copolymerization reaction of partially neutralized acrylic acid (SA) on bentonite micropowder (BT) using N,N′-methylenebisacrylamide (MBA) as a crosslinker and potassium persulfate (I) as an initiator in aqueous solution. The influences of Na+-BT, organoBT (O-BT), and the content of the BT in the copolymeric gels on the swelling behaviour in deionized water and saline solution (0.2 wt.% NaCl(aq)) were investigated. Results showed that the equilibrium swelling (W) was decreased by adding a small amount of the BT, however, at higher BT contents, the W increased with the increase of the amount of clay. It was found that a concentration of 14 wt.% Na+-BT gave the best results absorption (955 g/g). Moreover, the amount of swelling for these absorbents in saline solution was smaller than that in deionized water. These hydrogels were characterized by X-ray diffraction and scanning electron microscopy. Finally, the thermogravimetric analysis indicated that introduction of clay to the polymer network resulted in an increase in thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号