首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
采用分子动力学方法对端口接枝不同数量羧基的扶手椅型和锯齿型单壁碳纳米管弹性模量进行了模拟研究. 结果表明, 扶手椅型(5, 5)、(10, 10)管和锯齿型(9, 0)、(18, 0)管在未接枝状态下杨氏模量分别为948、901GPa和804、860 GPa. 在接枝2-8个羧基情况下, 扶手椅型单壁碳纳米管拉伸杨氏模量基本不随接枝数量的增加而发生变化, 而锯齿型单壁碳纳米管则不同, 接枝状态下的弹性模量比未接枝状态小很多, 但随接枝数量的增加又呈略增趋势. 分别从接枝后碳纳米管变形电子密度等值线结构变化、键长变化和系统势能变化规律等方面, 对单壁碳纳米管弹性模量的接枝效应进行了分析.  相似文献   

2.
We have numerically studied the transverse elastic behavior of a unidirectional composite comprising non-overlapping silica fibers dispersed in a rubber matrix. Some composite morphologies that provided an ultra high transverse shear modulus at rather moderate silica loadings were identified. For these morphologies, predicted elastic stiffening levels were in agreement with those measured at low strains in carbon black and silica filled rubbers, leading one to surmise that such elastic stiffening may also play an important role in the low strain mechanical responses of actual carbon black or silica filled rubbers.  相似文献   

3.
The light-driven crawling of a molecular crystal that can form three phases, (α, β, and γ) is presented. Laser irradiation of the molecular crystal can generate phase-dependent transient elastic lattice deformation. The resulting elastic lattice deformation that follows scanning irradiation of a laser can actuate the different phases of molecular crystal to move with different velocity and direction. Because the γ phase has a large Young's modulus (ca. 26 GPa), a force of 0.1 μN can be generated under one laser spot. The generated force is sufficient to actuate the γ-formed molecular crystals in a wide dimensional range to move longitudinally at a velocity of about 60 μm min−1, which is two orders of magnitude faster than the α and β phases.  相似文献   

4.
超拉伸聚乙烯的弹性模量和导热性能   总被引:8,自引:0,他引:8  
为了揭示聚合物分子链伸展、取向的本征特性,发展了两个新的测量方法和实验装置,用于研究拉伸比高达200的超拉伸聚乙烯凝胶的弹性性能、传热性能和聚合物结构的关系.应用激光脉冲热致超声法给出材料拉伸方向和横向杨氏模量,应用激光脉冲光热辐射法给出拉伸方向,横向和厚度方向的导热系数.随拉伸比λ的增加,轴向杨氏模量急剧的增加,而横向的仅有少许减小.导热系数具有相似的特性.本文发现当λ=200时,这种拉伸取向聚乙烯的轴向模量可达钢的80%,而导热系数甚至可达2倍,直至成为热的良导体,这是由于在高拉伸比时形成了相当数量的伸展分子链构成的针状晶体———晶桥.本文提出晶桥作为短纤维分散相的取向聚合物的结构模型,对于超拉伸聚乙烯的上述特性可以进行统一描述和定量化分析,和实验结果很好符合.  相似文献   

5.
The surface structure and surface mechanical properties of low‐ and high‐density polyethylene were characterized by atomic force microscopy (AFM) as the polymers were stretched. The surfaces of both materials roughened as they were stretched. The roughening effect is attributed to deformation of nodular structures, related to bulk spherulites, at the surface. The surface‐roughening effect is completely reversible at tensile strains in the elastic regime and partially reversible at tensile strains in the plastic regime until the polymers are irreversibly drawn into fibers. AFM force versus distance interaction curves, used to measure changes in the stiffness of the surface and the surface elastic modulus as a function of elongation, show that the surfaces become softer as the polymers are drawn into fibers at high strains. At low elastic strains, however, the surface elastic modulus of HDPE increases—attributed to elastic energy stored by the amorphous regions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2263–2274, 2001  相似文献   

6.
The light‐driven crawling of a molecular crystal that can form three phases, (α, β, and γ) is presented. Laser irradiation of the molecular crystal can generate phase‐dependent transient elastic lattice deformation. The resulting elastic lattice deformation that follows scanning irradiation of a laser can actuate the different phases of molecular crystal to move with different velocity and direction. Because the γ phase has a large Young's modulus (ca. 26 GPa), a force of 0.1 μN can be generated under one laser spot. The generated force is sufficient to actuate the γ‐formed molecular crystals in a wide dimensional range to move longitudinally at a velocity of about 60 μm min?1, which is two orders of magnitude faster than the α and β phases.  相似文献   

7.
填充增韧聚丙烯复合材料的断裂韧性及增韧机理   总被引:7,自引:2,他引:7  
用表面处理的CaCO3填充聚丙烯(均聚物PP),PP/CaCO3复合材料的杨氏模量和缺口冲击强度同时得到增加,克服了通常填料填充聚合物降低韧性的缺点.用J积分研究其断裂韧性给出:裂纹扩展阻力dJ/d(△a)低是聚丙烯缺口脆性的主要原因,随着填料体积分数Vf的增加PP/CaCO3的Jc出现一极大值,但其裂纹扩展阻力却不断增大;用裂纹引发点后的Jc=Jc+[dJ/d(△a)]·△a=Je(J积分弹性分量)+Jp(J积分塑性分量)可全面表征韧性聚合物材料的断裂韧性;PP/CaCO3的Jp明显增加,是裂纹扩展阻力和Jt增加的原因.SEM分析结出,CaCO3填料在裂尖损伤区内引起强烈的空洞化损伤,并增强了裂尖钝化破坏过程,这些细观损伤机制的变化,导致能量耗散增加,可用滞后分量Jh定量表征.由此给出聚合物材料被增韧的J积分判据为:复合材料的Jh>基体的Jhm.  相似文献   

8.
The crystallinity, elastic modulus, and tensile strength of samples of various draw ratios together with the true stress—strain curves of high-density polyethylene were determined to establish correlations with morphological changes occurring during deformation. Changes of crystallinity at draw ratios below 5, i.e., constancy during drawing of quenched film and a decrease during drawing of annealed film, are explained by the formation of microfibrils with crystallinity independent of the thermal history of the film. The microfibrils slide past each other at higher draw ratios, generating an increasing number of interfibrillar tie molecules, which is reflected in the increasing number of interfibrillar tie molecules, which is reflected in the increase of crystallinity, elastic modulus, and tensile strength. From the true stress—strain curves, the differential work density for the deformation of the volume element was calculated as a function of the draw ratio. It contains two components which reflect two different mechanisms of deformation. The first component, decreasing with increasing draw ratio, can be associated with the destruction of the original microspherulitic structure; the second one, increasing with increasing draw ratio, can be associated with the deformation of the new fiber structure, i.e., with the sliding motion of the microfibrils formed during the first deformation step.  相似文献   

9.
This paper describes the mechanical properties of thin-walled, liquid-filled composite capsules consisting of calcium pectinate and shellac. In a series of experiments we measured the deformation of these particles in a spinning drop apparatus. For different pH-values we studied the elastic properties of these particles and compared the obtained results with the mechanical response measured by squeezing capsule experiments. In analogy to these experiments, we also investigated liquid-filled unloaded calcium pectinate capsules without the addition of shellac. The deformation properties of these experiments and the surface Young moduli were in good agreement. Furthermore we investigated the liquid-filled calcium pectinate and the composite capsules by NMR microscopy. These experiments allowed investigations of the membrane thickness and the kinetics of membrane growing. Additional characterizations by stress controlled small amplitude surface shear experiments of similar composed gel layers provided coherent results for the surface Young modulus.  相似文献   

10.
The orientation and crystallinity evolution of isotactic polypropylene (iPP) induced by rolling were studied using wide angle X-ray scattering with an area detector. The tensile mechanical properties of rolled isotactic polypropylene sheets were also measured in this work. The texture component method was used to analyze the rolling texture. The rolling texture consists mainly of (010)[001], (130)[001] and [001]//RD fiber components in the sample with a rolling true strain of 1.5. The results reveal that crystallinity drastically decreases during rolling. It is suggested that amorphization is a deformation mechanism which takes place as an alternative to crystallographic intralamellar slip depending on the orientation of the lamellae. Both the orientation and crystallinity affect the tensile mechanical properties of rolled polypropylene. Crystallinity influences the elastic modulus on both directions and yield strength on transverse direction at the first stage of deformation. Orientation is the main reason for the changes of mechanical properties, especially at the latter part of deformation. The changes of both tensile strength and elongation percentage on rolling direction are larger than those on transverse direction, which results from the orientation. At last, the anisotropic mechanical properties occur on the rolling and transverse direction: high tensile strength with low elongation percentage on rolling direction and low tensile strength with high elongation percentage on transverse direction.  相似文献   

11.
Polymer semiconductors frequently form crystals or mesophases with lamellae, that comprise alternating layers of stacked backbones and side chains. Controlling lamellar orientation in films is essential for obtaining efficient charge carrier transport. Herein, lamellar orientation is investigated in an application-relevant setup: lamellae assembled on a substrate that strongly favors face-on orientation, but exposed to a film surface that promotes orientation along an “easy” direction, other than face on. It is assumed that the face-on order propagates from the substrate, but the lamellae bend to reduce their surface energy. A qualitative free-energy model is developed. The deformation is investigated as a function of film thickness, effective Young modulus, anchoring coefficient, and easy direction at the free surface. The calculations highlight the importance of elastic constants – lamellae can substantially deform already when Young moduli are only an order of magnitude smaller than the values that are reported for crystals. Softer Young moduli are expected when lamellar assembly occurs in a non-solidified mesophase that can be an equilibrium or (more speculatively) a transient state prior to crystallization. The alternative scenario of a two-layered film is also evaluated, where edge-on and face-on grains form, respectively, at the free surface and substrate.  相似文献   

12.
Changes in the material elastic properties of winding composite rings of unidirectional structure under the influence of cyclically changing temperatures and moisture with the use of the resonance method is studied. The advantages of the resonance method over standard methods for determination of the elastic modulus are mentioned. Results of experiments for determination of the elastic modulus of winding fiberglass rings after the action of high temperature and moisture are given.  相似文献   

13.
测量高聚物粘度的方法很多。对高粘度样品经常采用拉伸蠕变方法,这时测定的是拉伸粘度习η_T: σ=η_T(?)_f其中σ是拉伸应力,(?)_f是由此引起的拉伸流动的应变速率。由于高聚物是粘弹性材料。因此必须设法区分弹性形变和流动形变,才能得到η_T值。Bueche和Kraus等曾分别用拉伸蠕变方法研究聚甲基丙烯酸甲酯和聚顺丁二烯的本体粘度。他们所用的处理方法有三  相似文献   

14.
The influence of tensile deformation on gel-spun and hor-drawn ultra-high molecular weight polyethylene fibers has been investigated. In high modulus polyethylene fibers no deformation energy is used to break chemical bonds during deformation, and flow is predominantly present next to elastic behavior. Flow is reversible after tensile deformation to small strains, but becomes irreversible when yielding occurs.Stress relaxation experiments were used to determine the elastic and flow contribution to tensile deformation. A simple quantitative relation could then be derived for the stress-strain curve that directly links yield stress to modulus. Experimental stress-strain curves could be reasonably described by this relation.Flow during tensile deformation is shown to be correlated with the introduction of the hexagonal phase in crystalline domains. A mechanism of flow is proposed in which, at first, tie molecules or intercrystalline bridges are pulled out of crystalline blocks (reversible), followed by the break-up of crystalline blocks through slip of microfibrils past each other (stress-induced melting, irreversible).  相似文献   

15.
Deformation and nano-rheology of red blood cells: an AFM investigation   总被引:4,自引:0,他引:4  
Interaction forces, deformation and nano-rheology of individual red blood cells in physiologically relevant solution conditions have been determined by colloid probe atomic force microscopy (AFM). On approach of the physically immobilised cell and silica glass spherical probe surfaces, deformation of the red blood cell was observed in the force curves. At low levels of deformation, spring constants were determined in the range 3-6 m Nm(-1), whereas for higher levels of deformation, the forces increase non-linearly and on retraction, significant force curve hysteresis is observed (i.e. lower forces upon retraction). The extent of force curve hysteresis was dependent on both the drive velocity and loading force, typical of a viscoelastic system. The response of the red blood cell has been described by viscoelastic theory, where the short and long time scale elastic moduli and relaxation times are determined, i.e. the cell's nano-rheological properties elucidated. In addition to a time independent elastic modulus of 4.0 x 10(3)Nm(-2) at low levels of deformation, time-dependent elastic moduli ranges are observed (3.5 x 10(4) to 5.5 x 10(4)Nm(-2) at intermediate levels of deformation and 1.5 x 10(5) to 3.0 x 10(5)Nm(-2) at higher levels of deformation). That is, one elastic and more than one viscoelastic response to the red blood cell deformation is evident, which is considered to reflect the cellular structure.  相似文献   

16.
Elasticity of polyelectrolyte multilayer microcapsules   总被引:7,自引:0,他引:7  
We present a novel approach to probe elastic properties of polyelectrolyte multilayer microcapsules. The method is based on measurements of the capsule load-deformation curves with the atomic force microscope. The experiment suggests that at low applied load deformations of the capsule shell are elastic. Using elastic theory of membranes we relate force, deformation, elastic moduli, and characteristic sizes of the capsule. Fitting to the prediction of the model yields the lower limit for Young's modulus of the polyelectrolyte multilayers of the order of 1-100 MPa, depending on the template and solvent used for its dissolution. These values correspond to Young's modulus of an elastomer.  相似文献   

17.
Continuous rotation of a cholesteric droplet under the heat gradient was observed by Lehmann in 1900. This phenomenon, the so-called Lehmann effect, consists of unidirectional rotation around the heat flux axis. We investigate this gradient heat effect using infrared laser optical tweezers. By applying single trap linearly polarized optical tweezers onto a radial achiral nematic liquid crystal droplet, trapping of the droplet was performed. However, under a linearly polarized optical trap, instead of stable trapping of the droplet with slightly deformed molecular directors along with a radial hedgehog defect, anomalous continuous rotation of the droplet was observed. Under low power laser trapping, the droplet appeared to rotate clockwise. By continuously increasing the laser power, a stable trap was observed, followed by reverse directional rotation in a higher intensity laser trap. Optical levitation of the droplet in the laser beam caused the heat gradient, and a breaking of the symmetry of the achiral nematic droplet. These two effects together led to the rotation of the droplet under linearly polarized laser trapping, with the sense of rotation depending on laser power.  相似文献   

18.
Fly ash from coal combusting thermal power plants is a serious problem from the point of view of its storing and pollution of the environment. Currently, thermal power plants change the combustion technology from pulverized firing to fluidized bed combustion. A promising reutilization of the fly ash from fluidized bed combustion (FFA) shows itself in the ceramic industry. In this paper, the influence of the FFA content in illite-based ceramics on its thermophysical and elastic properties was investigated during heating and cooling stages of firing. The samples are made from a mixture of the illitic clay (60 mass%), various portion of FFA (0–40 mass%) and grog (40–0 mass%). The impulse excitation technique is used for the determination of Young’s modulus and the internal friction. Analyses that included DTA, TG, thermodilatometry, XRD and SEM are used to obtain the better understanding of the development of the phase transformations in the samples. It is found that a higher amount of FFA in the sample leads to a higher mass loss at low temperatures, a higher mass loss due to the decomposition of calcite, a less intensive shrinkage after firing, a lower bulk density and lower Young’s modulus during firing above 800 °C and after cooling. After firing of the samples at 1100 °C, the mechanical strength and Young’s modulus decrease with the FFA content. A linear relationship between Young’s modulus and the mechanical strength is observed.  相似文献   

19.
Indentation is a comparatively simple and virtually nondestructive method of determining mechanical properties of material surfaces by means of an indenter inducing a localized deformation. The paper present experimental results of the load-displacement curves, the hardness and the elastic modulus data, and associated analysis for poly(methyl methacrylate) (PMMA) surfaces as a function of contact displacement. The experimental results include continuous stiffness indentations performed using constant loading rate and constant displacement rate experiments. The continuous stiffness indentation involves continuous calculation of a material stiffness, and hence hardness and elastic modulus of surfaces, during discrete loading-unloading cycles, as in a conventional indentation routine, and in a comparatively smaller time constant. The dependence of the compliance curves, the hardness, the elastic modulus and the plasticity index upon the imposed penetration depth, the applied normal load and the deformation rate are described. Tip area and load frame calibrations for the continuous stiffness indentation are also reported. The paper includes practical considerations encountered during indentation of polymers specifically at low penetration depths. The experimental results show a peculiarly harder response of PMMA surfaces at the submicron (near to surface) layers.  相似文献   

20.
On axial extension of polymer melts at constant deformation rates, the development of high-elastic deformation is of predominant importance during the initial period. High-elastic deformation is accompanied by a rise in viscosity and in the modulus of high-elasticity and by retardation of the relaxation processes in the region of large relaxation times. At relatively low deformation rates, the rise in viscosity and high-elasticity modulus and the retardation of relaxation processes may give way to a decrease in viscosity and high-elasticity modulus and acceleration of relaxation processes, so that stationary flow regimes are attained. The transition from strain regimes with increasing viscosity and modulus of high elasticity to those with a decrease of these quantities corresponds to an increase in the rate of accumulation of irreversible deformation. Accordingly, a competing influence due to the orientation effect and to destruction of the network of intermolecular bonds becomes evident while stationary flow is being attained. The orientation effect must be responsible for the retardation of the relaxation processes, whereas rupture of the intermolecular network bonds results in structural relaxation accelerating relaxation processes. In contrast to shearing, during extension the orientation effect is of predominant importance. Hence in stationary flow regimes the viscosity may not only remain independent of the rate of strain, but even increase with it. In this case the contribution of the large relaxation times to the relaxation spectrum increases with increasing stress in stationary flow regimes. The fact that the longitudinal viscosity and the modulus of high elasticity are independent of the stress in stationary flow regimes does not guarantee linearity of the mechanical properties of the polymer in the prestationary stage of deformation when complex changes occur in its relaxation characteristics. At high deformation rates the viscosity and the modulus of high elasticity keep rising with increasing deformation until rupture occurs. Determination of the strength of polystyrene samples vitrified after extension showed that it is due not to the entire degree of extension, but only to the value of accumulated high-elastic deformation. The strength of the vitrified samples is to a first approximation independent of the rate at which the melt was extended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号