首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel family of highly soluble polymers containing 3.3′-bicarbazolyl moieties is reported. Utilizing simple and efficient chemical oxidation of carbazole and its derivatives by iron trichloride exclusively and quantitatively yields the bicarbazolyl dimmers with reactive oxirane groups. The polymers were prepared in polyaddition reaction of bicarbazolyl-containing diepoxydes with 4,4′-thiobisbenzenethiol, 2,5-dimercapto-1,3,4-thiadiazole, or 1,3-benzenedithiol in the presence of catalyst triethylamine. Obtained compounds were characterized using GPC, DSC, IR, UV, fluorescence and 1H NMR spectroscopy. The hole drift mobility reaches 10−4 cm2/Vs at high electric fields. Such processable polymers with conjugated-nonconjugated repeating units in the main chain and good charge carrier mobility are quite promising for fabrication of optoelectronic devices.  相似文献   

2.
A series of novel polyamide-imides (PAIs) with high glass transition temperature were prepared from diimide-dicarboxylic acid, 2,2′-bis(trifluoromethyl)-4,4′-bis(trimellitimidophenyl)biphenyl (BTFTB), by direct polycondensation with various diamines in N-methyl-2-pyrrolidinone using triphenyl phosphite and pyridine as condensing agents in the presence of dehydrating agent (CaCl2). The yield of the polymers was obtained was high with moderate to high inherent viscosities (0.80-1.03 dL g−1). Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weights up to 8.6 × 104 and 22 × 104, respectively. The PAIs were amorphous in nature. Most of the polymers exhibited good solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine, cyclohexanone and tetrahydrofuran. The polymer films had tensile strength in the range of 79-103 MPa, an elongation at break in the range of 6-16%, and a tensile modulus in the range between 2.1 and 2.8 GPa. The glass transition temperatures of the polymers were determined by DMA method and they were in the range of 264-291 °C. The coefficients of thermal expansion (CTE) of PAIs were determined by TMA instrument and they were between 29 and 67 ppm °C−1. These polymers were fairly thermally stable up to or above 438 °C, and lose 10% weight in the range of 446-505 °C and 438-496 °C, respectively, in nitrogen and air. These polymers had exhibited 80% transmission wavelengths which were in the range of 484-516 nm and their cutoff wavelengths were in between 418 and 434 nm. The PAIs with trifluoromethyl group have higher bulk density resulting in higher free volume and then lowering the dielectric constant.  相似文献   

3.
Novel optically active aromatic poly(amide-imide)s (PAIs) were prepared from newly synthesized N,N′-(4,4′-diphthaloyl)-bis-l-isoleucine diacid (3) via polycondensation with various diamines. The diacid was synthesized by the condensation reaction of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (1) with l-isoleucine (2) in a mixture of acetic acid and pyridine (3:2 v/v). All the polymers were obtained in quantitative yields with inherent viscosities of 0.20-0.43 dL g−1. All the polymers were highly organosoluble in solvents like N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran, γ-butyrolactone, cyclohexanone and chloroform at room temperature or upon heating. These poly(amide-imide)s had glass transition temperatures between 198 and 231 °C, and their 10% weight-loss temperatures were ranging from 368 to 398 °C and 353 to 375 °C under nitrogen and air, respectively. The polyimide films had tensile strengths in the range of 63-88 MPa and tensile moduli in the range of 0.8-1.4 GPa. These poly(amide-imide)s possessed chiral properties and the specific rotations were in the range of −3.10° to −72.92°.  相似文献   

4.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO).  相似文献   

5.
A novel technique, high temperature headspace liquid-phase microextraction (HS-LPME) with room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) as extractant, was developed for the analysis of dichlorodiphenyltrichloroethane (p,p′-DDT and o,p′-DDT) and its metabolites including 4,4′-dichlorodiphenyldichloroethylene (p,p′-DDE) and 4,4′-dichlorodiphenyldichloroethane (p,p′-DDD) in water samples by high performance liquid chromatography with ultraviolet detection. The parameters such as salt content, sample pH and temperature, stirring rate, extraction time, microdrop volume, and sample volume, were found to have significant influence on the HS-LPME. The conditions optimized for extraction of target compounds were as follows: 35% NaCl (w/v), neutral pH condition, 70 °C, 800 rpm, 30 min, 10 μL [C4MIM][PF6], and 25 mL sample solutions. Under the optimized conditions, the linear range, detection limit (S/N = 3), and precision (R.S.D., n = 6) were 0.3-30 μg L−1, 0.07 μg L−1, and 8.0% for p,p′-DDD, 0.3-30 μg L−1, 0.08 μg L−1, and 7.1% for p,p′-DDT, 0.3-30 μg L−1, 0.08 μg L−1, and 7.2% for o,p′-DDT, and 0.2-30 μg L−1, 0.05 μg L−1, and 6.8% for p,p′-DDE, respectively. Water samples including tap water, well water, snow water, reservoir water, and wastewater were analyzed by the proposed procedure and the recoveries at 5 μg L−1 spiked level were in the range of 86.8-102.6%.  相似文献   

6.
The novel nickel(II) (1) and copper(II) (2) complexes bearing 2′-(4′,6′-di-tert-butylhydroxy-phenyl)-1,4,5-triphenyl imidazole ligand have been synthesized and characterized. The molecular structure analyses of complexes 1 and 2 indicated that Ni(II) centre in 1 adopts a distorted tetrahedral coordination geometry with a dihedral angle of 85.2° between Ni(1)O(1)N(1) plane and Ni(1)O(1A)N(1A) plane, while the Cu(II) centre in 2 represents a distorted square planar coordination geometry with a cis-N2O2 arrangement of the donor atoms, the dihedral angle being 32° between Cu(1)O(1)N(1) plane and Cu(1)O(1A)N(1A) plane. After activation with methylaluminoxane (MAO), both Ni(II) and Cu(II) complexes can be used as catalysts for the addition polymerization of norbornene (NB). The polynorbornenes (PNBs) are produced with very high polymerization activity (108 g PNB mol−1 Ni h−1) for Ni(II) complex and moderate catalytic activity (105 g PNB mol−1 Cu h−1) for Cu(II) complex, respectively. The high molecular weight polynorbornenes (106) are obtained for complexes 1 and 2. Moreover, the distinct effects of polymerization temperature and Al/M ratio on catalytic activities and molecular weights of polymers are discussed.  相似文献   

7.
Fakhari AR  Khorrami AR  Naeimi H 《Talanta》2005,66(4):813-817
A novel sensitive chromogenic reagent, N,N′-bis(3-methylsalicylidene)-ortho-phenylene diamine (MSOPD), has been synthesized and used in the spectrophotometric determination of nickel. At pH 8, MSOPD can react with nickel ion at room temperature to form a 1:1 complex. The apparent molar absorptivity is 9.5 × 104 l mol−1 cm−1 at 430 nm. Beer's low is obeyed over the range 0-1.0 × 10−5 M of nickel with a detection limit of 1.36 × 10−8 M. The relative standard deviation for measurement of 3.41 × 10−6 M nickel is 1.3% (n = 10). The method has successfully been applied to determination of trace amounts of nickel in some natural food samples.  相似文献   

8.
Nitric oxide (NO) plays a very important role in human blood system. In this work, a novel approach has been developed for the quantitation of ultra-trace NO derivatized with 1,3,5,7-tetramethyl-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s- indacene (DAMBO) using a polymer monolith microextraction (PMME) with a poly(methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith in conjunction with high-performance liquid chromatography (HPLC). Both derivatization and PMME conditions have been optimized in detail. The detection limit of derivatized NO was 2 × 10−12 mol L−1 (signal to noise = 3) and linear range was 9 × 10−11-4.5 × 10−8 mol L−1. The proposed DAMBO-based derivatization-PMME-HPLC-fluorescence detection method has been successfully applied for the determination of NO in 10 μL blood samples of healthy persons and patients suffering from ischemic cardio-cerebrovascular diseases with recoveries varying from 87.40 to 91.60%.  相似文献   

9.
A series of parent poly(aryl ether ketone)s bearing different content of unsaturated pendant propenyl groups were synthesized via nucleophilic substitution polymerization from 3,3′-diallyl-4,4′-dihydroxybiphenyl, 9,9′-bis(4-hydroxyphenyl) fluorene and 4,4′-difluorobenzophenone. The polymers with pendant aliphatic sulfonic acid groups were further synthesized by free radical thiol-ene coupling reactions between 3-mercapto-1-propanesulfonic sodium and the parent propenyl functional copolymers. The resulting sulfonated polymers with high inherent viscosity (1.83-4.69 dL/g) were soluble in polar organic solvents and can form flexible and transparent membranes by casting from their solutions. The copolymers with different ion exchange capacity could be conveniently synthesized by varying the monomers ratios. Transmission electron microscopy (TEM) was used to examine the microstructures of the membrane and the results revealed that significant hydrophilic/hydrophobic microphase separation with spherical, uniform-sized (5-10 nm) and well-dispersed hydrophilic domains was afforded. The proton conductivities of the as-prepared membranes and the state-of-the-art Nafion 117 membrane in fully hydrated state were investigated. The results revealed that the proton conductivity of the synthesized membranes increased more remarkably than that of Nafion 117 membrane with increasing temperature. The membrane with 1.69 mequiv/g of IEC had a conductivity of 2.5 × 10−2 Scm−1 at 100 °C. The membranes also possessed excellent mechanical properties, good thermal, oxidative, hydrolytic and dimensional stabilities.  相似文献   

10.
A new interesting class of linear unsaturated polyesters based on dibenzylidenecycloalkanones have been synthesized by interfacial polycondensation of 4,4-azodibenzoyl chloride or 3,3-azodibenzoyl chloride with: 2,5-bis(p-hydroxybenzylidene)cyclopentanone I, 2,6-bis(p-hydroxybenzylidene)cyclohexanone II, 2,6-divanillylidenecyclohexanone III, or 2,7-bis(p-hydroxybenzylidene)cycloheptanone IV at ambient temperature. The copolyesters are also synthesized from the monomers I, II, III or IV with the diacid chlorides. The resulting polyesters and their copolyesters were characterized by elemental analyses, IR spectroscopy and solubility. Additionally, inherent viscosity of the polyesters in the range 0.32-0.86 dL g−1 and the inherent viscosity of the copolyesters in the range 0.28-0.65 dL g−1 were determined. The UV-visible spectra of certain polymers were measured in m-cresol solution and showed a characteristic absorption band at 435-473 nm due to n-π* transition. The thermal properties of the polymers were evaluated by thermo gravimetric analysis and differential scanning calorimetry measurements and correlated with their structural units. The crystallinity of some polyesters and copolyesters were tested. In addition, the electrical properties of all polyesters and copolyesters were measured.  相似文献   

11.
Three new diamines 1,2-di(p-aminophenyloxy)ethylene, 2-(4-aminophenoxy)methyl-5-aminobenzimidazole and 4,4-(aminopheyloxy) phenyl-4-aminobenzamide were synthesized and polymerized with 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP), 4,4′-(hexafluoroisopropyledene)diphthalic anhydride (HF) and 3,4,9,10-perylene tetracarboxylic acid dianhydride (PD) either by one step solution polymerization reaction or by two step procedure. The later includes ring opening poly-addition to give poly(amic acid), followed by cyclodehydration to polyimides with the inherent viscosities 0.62-0.97 dl/g. Majority of polymers are found to be soluble in most of the organic solvents such as DMSO, DMF, DMAc, m-cresol even at room temperature and few becomes soluble on heating. The degradation temperature of the resultant polymers falls in the ranges from 240 °C to 550 °C in nitrogen (with only 10% weight loss). Specific heat capacity at 300 °C ranges from 1.1899 to 5.2541 J g−1 k−1. The maximum degradation temperature ranges from 250 to 620 °C. Tg values of the polyimides ranged from 168 to 254 °C.  相似文献   

12.
A tetranitrile monomer was synthesized by nucleophilic aromatic substitution of N,N′-bis(2-hydroxyethyl)-4,13-diaza-18-crown-6 onto 4-nitrophthalonitrile. A series of polymeric metal-free and metallophthalocyanine (M = 2H, Zn, Cu, Co and Ni) polymers was prepared by polymeric tetramerization reaction of the tetranitrile monomer with proper materials. The electrical conductivities of the polymeric phthalocyanines measured as gold sandwiches were found to be ∼10−9–10−4 S cm−1 in a vacuum and in argon. The extraction ability of the metal-free polymeric phthalocyanine was evaluated in tetrahydrofuran using several alkali metal picrates such as Li+, Na+, K+ and Cs+. The extraction affinity of the metal-free polymeric phthalocyanine for K+ was found to be highest in the heterogeneous solid–liquid phase extraction experiments. The disaggregation property of the metal-free polymeric phthalocyanine was investigated with sodium, potassium and ammonium ions and methanol. All the novel compounds were characterized by using elemental analysis, UV–Vis, FT-IR, NMR and MS spectral data and DTA/TG.  相似文献   

13.
A novel method for the simultaneous determination of 1-hydroxypyrene (1-OHP), β-naphthol (β-NAP) and 9-hydroxyphenanthrene (9-OHPe) in human urine has been established by using synchronous fluorescence spectrometry. It was based on the fact that synchronous fluorescence spectrometry can resolve the broad-band overlapping of conventional fluorescence spectra, which arise from their similar molecular structures. Only one single scan is needed for quantitative determination of three compounds simultaneously when Δλ = 15 nm is chosen. The signals detected at these three wavelengths, 369.6, 330.0 and 358.0 nm, vary linearly when the concentration of 1-OHP, β-NAP and 9-OHPe is in the range of 2.16 × 10−8-1.50 × 10−5 mol L−1, 1.20 × 10−7-1.10 × 10−5 mol L−1 and 1.07 × 10−7-3.50 × 10−5 mol L−1, respectively. The correlation coefficients for the standard calibration graphs were 0.994, 0.999 and 0.997 (n = 7) for 1-OHP, β-NAP and 9-OHPe, respectively. The limits of detection (LOD) for 1-OHP, β-NAP and 9-OHPe were 6.47 × 10−9 mol L−1, 3.60 × 10−8 mol L−1 and 3.02 × 10−8 mol L−1with relative standard deviations (R.S.D.) of 4.70-6.40%, 2.80-4.20%, 3.10-4.90% (n = 6), respectively. The method described here had been applied to determine traces of 1-OHP, β-NAP and 9-OHPe in human urine, and the obtained results were in good agreement with those obtained by the HPLC method. In addition, the interaction modes between β-cyclodextrin (β-CD) and 1-OHP, β-NAP or 9-OHPe, as well as the mechanism of the fluorescence enhancement were also discussed.  相似文献   

14.
The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2′-(1Z,1′Z)-(1E,1′E)-(1,2-phenylenebis(methan-1-yl-1-ylidene))bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-ylidene)diphenol (L1) and 4,4′-(1E,1′E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L2) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L1) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 × 10−9 to 1.0 × 10−1 M Cd2+ with limit of detection 3.1 × 10−9, performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11 s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.  相似文献   

15.
Richard W. Heo 《Tetrahedron》2004,60(34):7225-7235
A substituted ferrocenophane, 1,1′-((1-tert-butyl)-1,3-butadienylene)ferrocene, was synthesized and polymerized via ring-opening metathesis polymerization (ROMP) to give soluble high molecular weight polymers with ferrocenylene units in the backbone. The monomer readily underwent polymerization upon exposure to a tungsten-based metathesis initiator, W(CHC6H4-o-OMe)(NPh)[OCMe(CF3)2]2 (THF), to give high molecular weight polymers (Mw=ca. 300,000). The molecular weights could be varied systematically by adjusting the monomer-to-catalyst ratio. UV/vis spectra revealed a bathochromic shift for the polymer, consistent with enhanced conjugation compared to the monomer. The polymer exhibited thermal properties similar to oligomeric poly(ferrocenylene). Cyclic voltammetry of the polymer suggested that the iron centers are coupled electronically. Upon doping with I2 vapor, the polymers displayed semiconducting properties (σ=10−5 S cm−1). Theoretical calculations were used to evaluate the nature of the bonding in these and related polymers.  相似文献   

16.
New polyesters having azomethine and phenylthiourea groups in the polymer backbone were synthesized by interfacial polycondensation method. The dihydroxy monomer N-(4-hydroxy-3-methoxybenzal) N′-(4′-hydroxyphenyl)thiourea was condensed with six diacid chlorides: terephthaloyl, isophthaloyl, azeloyl, suberoyl, pimeloyl and adipolyl chlorides. The resulting polyesters were characterized by viscosity, IR, NMR and TGA analysis. The wholly aromatic poly(azomethine ester) derived from terephthaloyl chloride when blended with polyaniline/NH4OH, polyaniline/HCl and pure polyaniline shows conductance in the range 3.2 × 10−3-0.91 × 10−1 S cm−1.  相似文献   

17.
The novel family of hole-transporting polymers containing hydrazone moieties is reported. The polymers were prepared in polyaddition reaction of dihydrazone-containing diepoxides with bifunctional nucleophilic linking agents in the presence of catalyst triethylamine. Obtained polymers were found to constitute novel polymeric hole transporting materials characterized by differential scanning calorimetry and time of flight method. The highest hole drift mobility in the newly synthesized polymers exceed 10−5 cm2 V−1 s−1 at an electric field of 106 V cm−1.  相似文献   

18.
A series of main chain azobenzene polymers containing diacetylene moieties with different lengths of the spacer {-[CC-CH2-O-C6H4-OCO-(CH2)m-O-C6H4-NN-C6H4-O-(CH2)m-OCO-C6H4-O-CH2-CC]n-, where m = 3, 6, 11} were synthesized by oxidative coupling polymerization. These polymers had molecular weights of 17,600-68,600 and polydispersity indices of 1.2-1.8 as determined by gel permeation chromatography using polystyrene as a standard. Their structures and properties were characterized and evaluated with NMR, FT-IR, X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC) and nonlinear optical (NLO) analyses. All the polymers could be cross-linked at the elevated temperatures due to the polymerization reactions of the diacetylene groups in the polymer backbone, and the cross-linked polymers showed dramatically modified properties, such as thermal stability and solvent resistance. The third-order nonlinear susceptibilities of the cross-linked polymers were evaluated by means of the Z-scan technique and calculated to be 3.60 × 10−9, 2.73 × 10−9, 2.28 × 10−9 esu, respectively, whereas the un-cross-linked polymers showed no obvious NLO property.  相似文献   

19.
Composite gel polymer electrolytes composed of poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP) and polymethylmethacrylate PMMA polymers, PC + DEC as plasticizer and LiCF3SO3 as salt and fumed silica as filler have been synthesized by solvent casting technique with varying plasticizer-filler ratio systematically. Films of thickness in the range of 40-70 μm were characterized by a.c. impedance measurements in the temperature range 303 K to 373 K. Addition of filler to the polymer electrolyte was found to result in an enhancement of the ionic conductivity. A maximum electrical conductivity of ∼1 × 10−3 S/cm at 303 K and ∼2.1 × 10−3 S/cm at 373 K has been achieved with the dispersion of the SiO2. FTIR spectral studies confirmed the polymer-salt interaction. XRD patterns exhibit the increased amorphicity in the blended composite gel polymer electrolytes. Scanning electron micrograph shows the dispersion of SiO2 particle in the polymer electrolyte.  相似文献   

20.
Monuron (C9H11ClN2O; N,N-dimethyl-N′-(4-chlorophenyl) urea, CAS 150-68-5) was synthesized and the heat capacities of the compound were measured in the temperature range from 79 to 385 K with a high precision automated adiabatic calorimeter. No phase transition or thermal anomaly was observed in this range. The enthalpy and entropy data of the compound relative to the reference temperature 298.15 K were derived based on the heat capacity data. The thermodynamic properties of the compound were further investigated through DSC and TG analysis. The melting point, the molar enthalpy, and entropy of fusion were determined to be 447.6±0.1 K, 29.3±0.2 kJ mol−1, and 65.4 J K−1 mol−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号