首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The state-selected reaction of CH(X2Πν″ = 0, 1) with H2 has been studied, in which CH was generated by IRMPD of a precursor gas, CH3OH. The subsequent evolution of CH (ν″ = 0, 1) was monitored by the sensitive LIF technique. For the ground state and vibrationally excited state CH, the reaction with H2 is found to depend on the total pressure in the sample cell at room temperature, which suggests that the reaction proceeds through an intermediate adduct, CH3. The backward dissociation process is found to depend on the buffer pressure, which can be rationalized via a collision-induced backward dissociation. The decay rates of CH (ν″ = 0, 1) due to collisions with H2 and Ar at a buffer pressure of 10 Torr are kH2 (ν″ = 1) = (2.3±0.1) × 10−1 cm3 molecule−1 s−1 and kAr (ν″ = 1) = (4.4±0.1) × 10−13 cm3 molecule−1 s−1. Possible effects of the vibrational excitation on the reaction rate of CH (ν″ = 1) are discussed.  相似文献   

2.
A mixture of NF3 and Ar is passed through an rf discharge in a flow-system to produce, among other species, F and NF2. When H2, D2, or CH4 are added downstream, reactions with F atoms produce vibrationally excited HF or DF together with H, D, or CH3. The latter free radicals can react with NF2, probably by an elimination reaction to produce electronically excited NF: NF2(2B1) + H(D, CH3) → HF*(DF* + NF(a1Δ). A vibrational-to-electronic energy transfer process between the products of this reaction then produces the next higher state of NF: HF(ν 2) + NF(a1Δ) → HF(ν−2) + NF(b1Σ+). A similar transfer process has also been found between the electronically excited a1Δ states of O2 and NF: O2(a1Δ) + NF(a1Δ) → O2(X3Σ) + NF(b1Σ+). The H or D atoms but not the CH3 radicals are then found to react with either NF(a1Δ) or NF(X3Σ) to produce electronically excited N(2D) atoms, which in turn react with the NF(a1Δ) molecules to produce N2(B3Πg). The observed nitrogen first positive radiation has been demonstrated to be produced entirely by this reaction mechanism rather than by the N(4S) recombination that accounts for the Rayleigh afterglow. In addition, the occurrence of the reaction N(2D) + N2O → NO(B2Πr) + N2 (X1Σ+g) has been verified. Finally we have observed emission at 3344 Å, which we attribute to the NF(A3Π), which has not been previously reported.  相似文献   

3.
Gaussian-2 ab initio calculations were performed to examine the six modes of unimolecular dissociation of cis-CH3CHSH+ (1+), trans-CH3CHSH+ (2+), and CH3SCH2+ (3+): 1+→CH3++trans-HCSH (1); 1+→CH3+trans-HCSH+ (2); 1+→CH4+HCS+ (3); 1+→H2+c-CH2CHS+ (4); 2+→H2+CH3CS+ (5); and 3+→H2+c-CH2CHS+ (6). Reactions (1) and (2) have endothermicities of 584 and 496 kJ mol−1, respectively. Loss of CH4 from 1+ (reaction (3)) proceeds through proton transfer from the S atom to the methyl group, followed by cleavage of the C–C bond. The reaction pathway has an energy barrier of 292 kJ mol−1 and a transition state with a wide spectrum of nonclassical structures. Reaction (4) has a critical energy of 296 kJ mol−1 and it also proceeds through the same proton transfer step as reaction (3), followed by elimination of H2. Formation of CH3CS+ from 2+ (reaction (5)) by loss of H2 proceeds through protonation of the methine (CH) group, followed by dissociation of the H2 moiety. Its energy barrier is 276 kJ mol−1. On both the MP2/6-31G* and QCISD/6-31G* potential-energy surfaces, the H2 1,1-elimination from 3+ (reaction (6)) proceeds via a nonclassical intermediate resembling c-CH3SCH2+ and has a critical energy of 269 kJ mol−1.  相似文献   

4.
The radiative lifetimes of nine vibrational levels of the C3(1Πu) radical were obtained from decay time studies of the C3(1Πu1Σ+g) fluorescence induced by a tunable dye laser. The lifetimes of the different vibronic levels were found to be constant within the experimental error limits, namely, τo = (200 ± 10) ns. The collisional deactivation of the C3(1Πu) states by helium gives rate constants between 2.5 and 4 in 10−11 cm3 molecule−1 s−1 units.  相似文献   

5.
This survey begins with the photochemistry at 254 nm and 298 K in the system H2O2COO2RH, the primary objective of which is to determine the rate constants for the reaction OH + RH → H2O + R relative to the well-known rate constant for the reaction OH + CO → CO2 + H. Inherent in the scheme is that the reaction HO2+CO→OH+CO2 is negligible compared with the OH reaction, and a literature consensus gives kHO2 < 10−19 cm3 molecule−1 s−1, or some 106 less than kOH at 298 K. Theoretical calculations establish that the first stage in the HO2 reaction is the formation of a free radical intermediate HO2 + CO → HOOCO (perhydroxooxomethyl) which decomposes to yield the products, and that the rate of formation of the intermediate is equal to the rate of formation of the products. The structure of the intermediate and a reaction profile are shown.

High temperature rate data reported subsequent to the data in the consensus and theoretical calculations lead here to a recommendation that, in the range 250–800 K, kHO2 = 3.45 × 10−12T1/2 exp(1.15 × 104/T) cm3 molecule−1 s−1, the hard-sphere-collision Arrhenius modification. This yields kHO2(298) = 1.0 × 10−27 cm3 molecule−1 s−1 or some 1014 slower than kOH(298).  相似文献   


6.
Bo-Zhen Chen  Ming-Bao Huang   《Chemical physics》2004,300(1-3):325-334
In the present theoretical work we have explored mechanisms of dissociation reactions of the vinyl radical in the A2A″ state (C2H3 (A2A″)) and examined possible pathways for nonadiabatic dissociation of C2H3 (A2A″) into C2H2 (X1Σg+). In the calculations we used the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with the cc-pVDZ and cc-pVTZ basis sets. Mechanisms for the following three dissociation channels of C2H3 in the A2A″ state were explored: (1) C2H3 (A2A″) → C2H2 (trans, 3Au) + H, (2) C2H3 (A2A″) → C2H2 (cis, 3A2) + H, and (3) C2H3 (A2A″) → H2CC (3A2) + H. The CASSCF and CASPT2 potential energy curve calculations for the C2H3 (A2A″) dissociation channels (1)–(3) indicate that there is neither transition state nor intermediate for each of the channels. At the CASPT2//CASSCF/cc-pVTZ level, the dissociation energies for channels (1)–(3) are predicted to be 84.3, 91.1, and 86.9 kcal/mol, respectively. For a recently observed nonadiabatic dissociation of C2H3 (A2A″) into C2H2 (X1Σg+) + H [J. Chem. Phys. 111 (1999) 3783], two previously suggested internal conversion (IC) pathways were examined based on our CASSCF and CASPT2 calculations. Our preliminary CASSCF and CASPT2 calculations indicate that the assumed IC pathway via the twisted C2H3 (A2A) structure might be feasible. The CASSCF/cc-pVTZ geometry optimization and frequency analysis calculations were performed for the four C2v bridge structures in the 2B2, 2A2, 2B1, and 2A1 states along the pathways of the 12A (X2A), 12A″ (A2A″), 22A″, and 22A states of C2H3, respectively, and the CASPT2//CASSCF/cc-pVTZ energetic results indicate that the assumed IC pathway, via a C2v (2A2) structure and then 2A2/2A1 surface crossing, be not feasible since at their excitation wavelengths (327.4 and 366.2 nm) the C2v (2A2) structure could not be accessed.  相似文献   

7.
A laser pulse-and-probe method has been used to determine the nascent vibrational populations in NO(v=0–4) and O2(v=6–11) formed in the thermal reaction: O(3P) + NO2 → O2(v) + NO(v). A frequency-tripled Nd: YAG laser is used to photolyse NO2, diluted tenfold in Ar, and laser-induced fluorescence spectroscopy in the NO A 2Σ+-X 2Π and O2 B 3Σu -X 3Σg electronic band system is used both to follow the kinetics of individual vibrational states and to determine the nascent vibrational distributions. The majority of the NO product is formed in v = 0 and the average vibrational yield is ≈ 4.6%. The O2 populations fall monotonically from v = 6 to 11 in a distribution close to what is expected on prior grounds. Based on a surprisal analysis, the average vibrational energy yield in O2 is ≈ 26%. The nature of the reaction dynamics is discussed.  相似文献   

8.
Three-dimensional trajectory surface hopping calculations were performed on two diabatic energy surfaces. The covalent surface describes the K(2S) + O2(3Σg) state and the ionic surface K+(1S) + O2(2Πg). Transitions from one surface to another were computed through the Landau—Zener model. At small deflection angles, the energy loss distribution exhibits two peaks, as observed, due to O2 in its electronic ground state and to vibrationally excited O2.  相似文献   

9.
The activation barrier for the CH4 + H → CH3 + H2 reaction was evaluated with traditional ab initio and Density Functional Theory (DFT) methods. None of the applied ab initio and DFT methods was able to reproduce the experimental activation barrier of 11.0-12.0 kcal/mol. All ab initio methods (HF, MP2, MP3, MP4, QCISD, QCISD(T), G1, G2, and G2MP2) overestimated the activation energy. The best results were obtained with the G2 and G2MP2 ab initio computational approaches. The zero-point corrected energy was 14.4 kcal mol−1. Some of the exchange DFT methods (HFB) computed energies which were similar to the highly accurate ab initio methods, while the B3LYP hybrid DFT methods underestimated the activation barrier by 3 kcal mol−1. Gradient-corrected DFT methods underestimated the barrier even more. The gradient-corrected DFT method that incorporated the PW91 correlational functional even generated a negative reaction barrier. The suitability of some computational methods for accurately predicting the potential energy surface for this hydrogen radical abstraction reaction was discussed.  相似文献   

10.
The mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction has been examined using ab initio molecular orbital methods. Ground-state and first-excited-state potential surfaces were plotted at the FOCI/cc-pVTZ level of theory as functions of two appropriate internal degrees of freedom. A conical intersection was found on the Cs pathway that is symmetric with respect to the plane perpendicular to the molecular plane of C2v H2NO(2B1). It is therefore considered that trajectories that start from H2NO(2B1) towards the product region detour around the conical intersection, pass through the neighborhood of the transition state that is located at the saddle point on the Cs pathway, and finally reach the products, NO(2Π)+H2. Thus we can explain the mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction, which has remained unclear to date.  相似文献   

11.
NH2 profiles were measured in a discharge flow reactor at ambient temperature by monitoring reactants and products with an electron impact mass spectrometer. At the low pressures used (0.7 and 1.0 mbar) the gas-phase self-reaction is dominated by a ‘bimolecular’ H2-eliminating exit channel with a rate coefficient of k3b(300 K) = (1.3 ± 0.5) × 10−12 cm3 molecule−1 s−1 and leading to N2H2 + H2 or NNH2 + H2. Although the wall loss for NH2 radicals is relatively small (kw ≈ 6–14 s−1), the contribution to the overall NH2 decay is important due to the relatively slow gas-phase reaction. The heterogeneous reaction yields N2H4 molecules.  相似文献   

12.
The rate coefficients of the reactions: (1) CN + H2CO → products and (2) NCO + H2CO → products in the temperature range 294–769 K have been determined by means of the laser photolysis-laser induced fluorescence technique. Our measurements show that reaction (1) is rapid: k1(294 K) = (1.64 ± 0.25) x 10−11 cm3 molecule−1 s−1; the Arrhenius relation was determined as k1 = (6.7 ± 1.0) x 10−11 exp[(−412 ± 20)/T] cm3 molecule−1 s−1. Reaction (2) is approximately a tenth as rapid as reaction (1) and the temperature dependence of k2 does not conform to the Arrhenius form: k2 = 4.62 x 10−17T1.71 exp(198/T) cm3 molecule−1 s−1. Our values are in reasonable agreement with the only reported measurement of k1; the rate coefficients for reaction (2) have not been previously reported.  相似文献   

13.
The continuous absorption spectrum of molecular bromine has been examined using laser induced photodissociation spectroscopy. In this technique, Br2 molecules are photolyzed using a flashlamp-pumped dye laser; the atomic products of the dissociation are then monitored by time-resolved resonance absorption spectroscopy in the vacuum ultraviolet. The relative absorptivities for the transitions B3Πo+u ← X1Σ+g and 1Π1u ← X1Σ+g have been obtained at 18350, 21010 and 22125 cm−1.  相似文献   

14.
Using N3 species as specific electron acceptor a defined ascorbate radical: AH↔A+H+max=360 nm, =3400 dm3 mol−1 cm−1) is observed. The attack of DMSO+ on vit.E results in a vit.E radical (k=1×109 dm3 mol−1 s−1; λmax=425 nm, =2400 dm3 mol−1 cm−1; 2k=4.7×108 dm3 mol−1 s−1). Vit.E-acetate leads to the formation of a radical cation (vit.E-ac+). β-carotene reacts also with DMSO+ forming a radical cation, β-car+ (k=1.75×108 dm3 mol−1 s−1; λmax=942 nm, =14 600 dm3 mol−1 cm−1), which probably leads to the formation of a dimer radical cation, (β-car)+2 (k=2.5×107 dm3 mol−1 s−1).

Using E.coli bacteria (AB1157) as a model system in vitro it was found that all three vitamins are rather efficient radiation protecting agents. They can also increase the activity of cytostatica, e.g., mitomycin C (MMC), by electron transfer process. The mixture of vit.E-ac and β-car acts contradictory, but adding vit.C to it a strong cooperative enhancement of the MMC activity is observed once again. A relationship between the pulse radiolysis and the radiation biological data is found and discussed. A possible explanation of the previously reported trials concerning the role of vit.E and β-car on the increased occurence of lung and other types of cancer in smokers and drinkers is presented.  相似文献   


15.
Potential energy surfaces are computed for the five lowest electronic states of the Al + H2 system in its symmetric nuclear arrangement. Mechanisms of photochemical reactions of Al atoms with H2 molecules are proposed, based on the calculated potential energy surfaces. The insertion reaction of the ground-state Al atom into the H2 molecule is difficult under normal conditions. However, photoexcited Al atoms are capable of reacting with H2 molecules along different pathways. The results obtained are consistent with experimental findings. The potential energy profiles of the dissociation reaction, AlH2 → AlH + H, are traced by employing the UMP2 energy gradient method. Photocexcited Al atoms react with H2 molecules along the 2 2A1 state pathway, and the AlH2(2Σg+) formed dissociates easily into AlH(1Σ) and H(2S). The dissociation reaction of ground-state AlH2 is difficult.  相似文献   

16.
In addition to the red phosphorescence (T1(3 A2n, π*) → S0) xanthione exhibits in solution an emission with a maximum at ≈ 23 000 cm−1 and φf(298°) = 5 × 10−3. It is shown that this emission is fluorescence from the second excited singlet state (S2 (1A1 π, π*) → S0).  相似文献   

17.
The cross section for the quenching of NH(c 1Π, ν = 0) by HN3 was measured by using a pulsed laser technique. A single rotational level of NH(c 1Π, ν = 0) was formed by exciting NH(a 1Δ, ν = 0) with a frequency doubled dye laser. NH(a1Δ) was produced by photolyzing HN3 with a XeCl excimer laser. The time profiles of the NH(c-a) fluorescence were measured at various pressures of HN3. Experiments were performed both in the presence and in the absence of He buffer gas. In the absence of He, the NH radicals were found to be translationally hot; the average velocity was 3800±600 m s−1. The quenching cross sections for the translationally hot and thermalized NH(c) radicals by HN3 were determined to be (28±5) × 10−16 and (85±3) × 10−16 cm2, respectively. No rotational level dependence could be observed in the quenching of the hot NH(c) radicals.  相似文献   

18.
The mechanism of the SO2 + HO2 reaction was studied theoretically for the first time. Three product channels were revealed, namely, O2 + HOSO, O2 + HSO2, and OH + SO3. The O2 + HOSO channel dominates the reaction under combustion conditions. A five-member-ring complex [SO2–HO2] exists at the entrance of the reaction. The structure and binding energy (De and D0) of the SO2–HO2 complex have been calculated. In view of D0 = 21.2 ± 2.0 kJ mol−1, the SO2–HO2 complex should be stable at low temperature. The infrared spectra and frequency shifts were calculated for both SO2–HO2 and SO2–DO2, and compared with the available experimental data.  相似文献   

19.
Autoionizing Rydberg levels of Li2 molecules in a supersonic molecular beam are populated by stepwise excitation with two tunable pulsed dye lasers. The observed autoionization spectra show severe perturbations. Based on calculations of quantum defects and a perturbation treatment of l-uncoupling a tentative assignment of Rydberg series up to n = 32 is proposed. The convergence limits of these series yield a value of IP = 41475 cm−1 for the adiabatic ionization potential and a vibrational constant ωe = 263 cm−1 for the X2Σ+g ground state of Li+2. The experimental results are compared with ab initio calculations combined with a core polarization potential, which yield the potential curve. the dissociation energy, the quadrupole moment and the vibrational frequency for the X2Σ+g ground state of Li+2, in the excellent agreement with experimental findings.  相似文献   

20.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号