首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The radiation-induced copolymerization of ethylene and sulfur dioxide has been studied in the liquid and gas phases. In the liquid phase, the copolymer composition remained equimolar over a temperature range of 20–160°C. and ethylene pressures of 50–680 atm. The rate of copolymerization in the liquid phase at 680 atm. increased with temperature to a maximum value at ~80°C. Above this temperature the rate steadily decreased to zero at 157°C. because of temperature-dependent depropagation reactions. In the gas phase, copolymers were formed that contained from 9 to 46 mole-% sulfur dioxide. Under constant conditions of temperature, pressure, and radiation intensity, the copolymerization rate in the gas phase increased with increasing sulfur dioxide in the initial gas mixture. The propagating species for the liquid-phase experiments is considered to consist of an equimolar complex molecule of ethylene and sulfur dioxide. For gas mixtures containing an excess molar concentration of ethylene, the propagating species are ethylene and the complex molecule. Infrared spectra show polysulfone structures. Calorimetric and x-ray diffraction analyses indicate crystalline structures for copolymers in the range 9–50 mole-% sulfur dioxide, although a melt transition temperature could not be observed for copolymer containing >31 mole-% sulfur dioxide. Clear uniform film was obtained with copolymers containing up to 31 mole-% SO2.  相似文献   

2.
The alternating copolymerization of cyclopentene and sulfur dioxide was studied. It takes place spontaneously at ?15°C. The rate of copolymerization in toluene was found to be proportional to [CPT]3 and [SO2]2 with the overall activation energy of 16.5 kcal/mole. Terpolymerizations with eight different third monomers were carried out to examine the character and behavior of the copolymerization system of CPT and SO2. However, the polymerizations with styrene and methyl methacrylate as the third monomers were found to be extraordinary, in that all the three components are not incorporated into the polymer chain.  相似文献   

3.
The rate of copolymerization of vinyl chloride (VC) with sulfur dioxide and the composition of the poly (vinyl chloride sulfone) formed have been measured for comonomer liquid mixtures with XVC = 0.1 to 1.0 and over the temperature range -95 to +46°C.

Polymerization was initiated by γ-irradiation (-95 to +46°C) and with the t-butyl hydroperoxide/SO2/methanol redox system (-95 to -18°C). The copolymerization rates and copolymer compositions indicated two distinct temperature regions, with a change in mechanism around 0°C. For radiation initiation below 0°C, the rate versus comonomer composition relationship showed a maximum at an xVC value which increased with increasing temperature. Above 0°C, the rate decreased with increasing temperature and was greatly retarded by SO2. No high molecular weight copolymer or VC homopolymer was formed on irradiation of comonomer mixtures above ~55°C.  相似文献   

4.
The γ-radiation-induced free-radical copolymerization of ethylene and CO has been investigated over a wide range of pressure, initial gas composition, radiation intensity, and temperature. At 20°C., concentrations of CO up to 1% retard the polymerization of ethylene. Above this concentration the rate reaches a maximum between 27.5 and 39.2% CO and then decreases. The copolymer composition increases only from 40 to 50% CO when the gas mixture is varied from 5 to 90% CO. A relatively constant reactivity ratio is obtained at 20°C., indicating that CO adds 23.6 times as fast as an ethylene monomer to an ethylene free-radical chain end. For a 50% CO gas mixture, the above value of 23.6 and the copolymerization rate decrease with increasing temperature to 200°C. The kinetic data indicate a temperature-dependent depropagation reaction. Infrared examination of copolymers indicates a polyketone structure containing ? CH2? CH2? and ? CO? units. The crystalline melting point increases rapidly from 111 to 242°C., as the CO concentration in the copolymer increases from 27 to 50%. Molecular weight of copolymer formed at 20°C. increased with increasing CO, indicating M?n values >20,000. Increasing reaction temperature results in decreasing molecular weight. Onset of decomposition for a 50% CO copolymer was measured at ≈250°C.  相似文献   

5.
Novel copolymers of trisubstituted ethylene monomers, fluorine ring-substituted 2-phenyl-1,1-dicyanoethenes, RC6H4CH[dbnd]C(CN)2 (where R is 2-F, 3-F, and 4-F) and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. High T g of the copolymers, in comparison with that of poly(4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decomposed in two stages in the range 210–600°C.  相似文献   

6.
In this work, the polypropylene impact copolymers were synthesized by a modified sequential polymerization process. The copolymerization of ethylene and propylene was carried out between two homopolymerization stages at two different pressures and temperatures and the rheology, morphology and thermal properties of reactor alloys were studied. It is found that the ethylene propylene rubber (EPR) content increased up to 32 wt% by increasing the copolymerization time to 20 min. At a fixed copolymerization time of 10 min, the addition of 50 ppm hydrogen (H2), increased the EPR content from 9.7 to 12.8 wt%. By doubling H2 concentration, no considerable change in EPR wt% was observed. It is found that the zero shear viscosity of the alloys is significantly under the influence of EPR wt%, not the molecular weight of matrix. The molecular weight of PP matrices determined by rheological data, mildly decreased from 463000 to 458000 g/mol by increasing the copolymerization time from 10 min to 15 min. At high copolymerization time/high H2 concentration, a melting peak in the differential scanning calorimetry test around 165°C for isotactic PP and also an endothermic peak around 127°C for the block copolymer with long ethylene segments, is observed. The study of interfacial strength by theoretical emulsion models showed that 15 min copolymerization time is optimum considering EPR wt%.  相似文献   

7.
A novel slurry reactor was used to investigate the copolymerization behavior of ethylene and 1-butene in the presence of 1 wt % Cr on Davison silica (Phillips-type) catalyst over the temperature range of 0–50°C, space velocity of about 0.0051 [m3 (STP)]/(g of catalyst) h, and a fixed ethylene to 1-butene feed mole ratio of 95 : 5. The effect of varying the ethylene to 1-butene feed ratios, 100 : 0, 96.5 : 3.5, 95 : 5, 93 : 7, 90 : 10, 80 : 20, and 0 : 100 mol/mol at 50°C was also studied. The addition of 1-butene to ethylene typically increased both copolymerization rates and yields relative to ethylene homopolymerization with the same catalyst, reaching a maximum yield for an ethylene: 1-butene feed ratio of 95 : 5 at 50°C. The incorporation of 1-butene within the copolymer in all cases was less than 5 mol %. The average activation energy for the apparent reaction rate constant, ka, based on total comonomer mole fraction in the slurry liquid for the ethylene to 1-butene feed mole ratio of 95 : 5 in the temperature range of 50–30°C measured 54.2 kJ/mol. The behavior for temperatures between 30 to 0°C differed with an activation energy of 98.2 kJ/mol; thus, some diffusion limitation likely influences the copolymerization rates at temperatures above 30°C. A kinetics analysis of the experimental data at 50°C for different ethylene to 1-butene feed ratios gave the values of the reactivity ratios, r1 = 27.3 ± 3.6 and r2 ≅ 0, for ethylene and 1-butene, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H3CH═C(CN)2 (where R is 2-bromo,3-bromo, 3-chloro, 2,3-dichloro, 2-chloro-6-fluoro, 2,6-difluoro, 3,4-difluoro, and 3,5-difluoro) and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. High T g of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 200–800°C range.  相似文献   

9.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 1,1-dicyano-2-(1-naphthyl)ethylenes, RC10H6CH?C(CN)2 (where R is H, 2-OCH3, 4-OCH3) and 4-fluorostyrene were prepared by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is (5.86) > 2-CH3O (4.28) > 4-CH3O (2.87). Relatively high Tg of the copolymers in comparison with that of poly(4-fluorostyrene) indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (7.3–7.7% wt.), which then decomposed in the 500–800°C range.  相似文献   

10.
Novel electrophilic trisubstituted ethylene monomers, halo ring-disubstituted 2-cyano-3-phenyl-2-propenamides, RPhCH = C(CN)CONH2, where R is 2,3-difluoro, 2,4-difluoro, 2,5-difluoro, 2,6-difluoro, 3,4-difluoro, 3,5-difluoro, 2-chloro-4-fluoro, 3-chloro-2-fluoro, 3-chloro-4-fluoro were prepared and copolymerized with styrene. The monomers were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (10–14 wt%), which then decomposed in the 500–800°C range.  相似文献   

11.
The copolymerization of vinyl acetate with methyl acrylate in the presence of Et2AlCl, Et1.5AlCl1.5, and Et2AlCl-benzoyl peroxide systems has been investigated. The influence of monomer ratios and organoaluminium compound concentration on the copolymer yield and composition have been determined and discussed. The monomer sequences distribution has been studied by means of 13C-NMR. It was found that organoaluminium compounds in the studied systems catalyze not only the alternating copolymerization, but also the homopropagation of both monomers. An alternating copolymer was obtained in reactions carried out at ?78°C, when a large excess of vinyl acetate was used in the monomer feed.  相似文献   

12.
Novel electrophilic trisubstituted ethylene monomers, methyl and methoxy ring- substituted 2-cyano-3-phenyl-2-propenamides, RPhCH=C(CN)CONH2, where R is 2,3-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2-(3-methoxyphenoxy), 2-(4-methoxyphenoxy), 3-(4-methoxyphenoxy), 4-(4-methylphenoxy), 2,3-methylenedioxy were prepared and copolymerized with styrene. The monomers were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (5.8–33.8 wt%), which then decomposed in the 500–800°C range.  相似文献   

13.
Novel electrophilic trisubstituted ethylene monomers, halo ring-substituted 2-cyano-3-phenyl-2-propenamides, RPhCH ? C(CN)CONH2, where R is 2-bromo, 3-bromo, 2-fluoro, 3-fluoro, 2-iodo, 3-iodo, and 4-iodo were prepared and copolymerized with styrene. The monomers were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (7-19 wt%), which then decomposed in the 500–800°C range.  相似文献   

14.
The radiation-induced copolymerization of isobutyl vinyl ether with trichloroethylene was investigated in the temperature range from ?50°C to 100°C over a wide range of comonomer compositions. A copolymer was obtained in which the monomers alternate with regularity along the polymer chain over essentially the entire range of comonomer compositions. Both the rate of copolymerization and the number-average molecular weight of the resulting copolymer were found to depend strongly on the initial comonomer composition. The monomer reactivity ratios were determined and correspond well with calculated values. An apparent activation energy of 3.2 kcal/mole was obtained for the copolymerization process which exhibits a dose rate dependence of 0.72. The number-average molecular weight was found to be strongly dependent on the irradiation temperature, reaching a maximum value at 5°C.  相似文献   

15.
The main focus of this study is the ethylene/hexene copolymerization with the silica supported metallocene SiO2/MAO/rac‐Me2Si[2‐Me‐4‐Ph‐Ind]2ZrCl2. Polymerizations were carried out in toluene at a reaction temperature of 40°C–60°C and the cocatalyst used was triisobutylaluminium (TIBA). The kinetics of the copolymerization reactions (reactivity ratios rE/H, monomer consumption during reaction) were investigated and molecular weights Mw, molecular weight distributions MWD and melting points Tm were determined. A schematic model for the blend formation observed was developed that based on a filtration effect of monomers by the copolymer shell around the catalyst pellet.  相似文献   

16.
Cationic copolymerization of tetrahydrofuran (THF) with ethylene oxide (EO) in the presence of diols leads to dihydroxy terminated telechelic copolymers. In the present article the influence of copolymerization conditions on the copolymer structure was studied in view of conclusions derived from studies of copolymerization kinetics and mechanism. It was shown that according to established copolymerization mechanism, the number average molecular weights increase linearly with conversion up to Mn ≅ 2500, hydroxyl end groups are bound exclusively to EO units and copolymers are composed of [EO]–[THF]y segments. Microstructure of copolymers may be to some extent regulated by changing reaction conditions. Some physical properties of copolymers also were studied. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3455–3463, 1999  相似文献   

17.
Electrophilic trisubstituted ethylene monomers, alkyl ring substituted methyl 2‐cyano‐3‐phenyl‐2‐propenoates, RC6H4CH[dbnd]C(CN)CO2CH3, where R is 2‐methyl, 3‐methyl, 4‐methyl, 4‐isopropyl, and 2,5‐dimethyl were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and methyl cyanoacetate, and characterized by CHN elemental analysis, IR, 1H and 13C NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 260–400°C range.  相似文献   

18.
Thermally pretreated catalysts were prepared by heating MgCl2/THF/TiCl4 (TT-0) at 80°C for 5 min (TT-1) and 60 min (TT-2), and at 108°C for 5 min (TT-3) and 60 min (TT-4). Ethylene–1-hexene copolymers were prepared with these catalysts. The TT-1 catalyst produced more blocky and higher 1-hexene content polymer than TT-0, 2, 3, and 4. Temperature rising elution fractionation (TREF) analysis was used to investigate the chemical composition distribution of the ethylene–1-hexene copolymer, exhibiting bimodal distribution for TT-0 and trimodal for TT-1, 2, 3, and 4. A portion of higher hexene content of the copolymer markedly increased when the copolymerization was performed with TT-1, indicating that copolymerization active sites were newly generated. Portion of homopolyethylene increased drastically when the copolymerization was performed with TT-4, indicating that ethylene homopolymerization active sites were increased. Gel permeation chromatography (GPC) also revealed that three kinds of active sites existed on the catalyst. 13C-NMR spectrum of each fraction after TREF analysis suggested that the isospecific active site could polymerize 1-hexene well, resulting in random and alternating copolymers. A scheme for generation of the active site and change of its nature during thermal treatment of bimetallic complex catalyst is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 291–300, 1998  相似文献   

19.
The radiation-induced copolymerization of chlorotrifluoroethylene with ethyl vinyl ether was investigated in the liquid phase at 20 and ?78°C over a wide range of monomer compositions. A copolymer was obtained in which the monomers alternate with regularity along the polymer chain over the entire range of monomer compositions investigated. Both the rate of copolymerization and the intrinsic viscosity of the resulting copolymer were found to depend strongly on the initial monomer composition, both reaching a maximum value at an equimolar concentration of the monomers. The monomer reactivity ratios were determined and correspond well with calculated values. A decrease in the irradiation temperature was accompanied by a marked decrease in the rate of copolymerization and the intrinsic viscosity of the copolymer.  相似文献   

20.
The copolymerization of ethylene with maleic anhydride was carried out with γ-radiation and a radical initiator, i.e., 2,2′-azobisisobutyronitrile and diisopropyl peroxydicarbonate under pressure at various reaction conditions. The homopolymerization of neither monomer was observed in this system. In the γ-ray-initiated copolymerization the G value (polymerized monomer molecules per 100 e.v.) was shown to be between 103 and 104. It was found that the dose rate exponent of the rate is approximately unity, and the rate is proportional to the amount of ethylene monomer. Apparent activation energies of 1.8 and 27.5 kcal./mole were obtained for γ-ray-initiated and AIBN-initiated copolymerization, respectively. Since the composition of copolymer is independent of monomer molar ratio and the molar ratio of ethylene to maleic anhydride in the polymer is approximately unity, the monomer reactivity ratios were obtained as rE ? 0 and rM ? 0 for γ-ray-initiated polymerization at 40°C. Alternating copolymerization was, therefore, concluded to occur. Infrared analysis of the copolymer is almost consistent with this. The copolymer in the solid state is amorphous. It is soluble in water, cyclohexane, and dimethylformamide and insoluble in lower alcohols, ether, and aromatic hydrocarbons. The aqueous solution of polymer gave a strong acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号