首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Applying Baxter's method of the Q-operator to the set of Sekiguchi's commuting partial differential operators we show that Jack polynomials Pλ(1/g)1, …, χn) …, χn) are eigenfunctions of a one-parameter family of integral operators Qz. The operators Qz are expressed in terms of the Dirichlet-Liouville n-dimensional beta integral. From a composition of n operators Qzk we construct an integral operator Sn factorising Jack polynomials into products of hypergeometric polynomials of one variable. The operator Sn admits a factorisation described in terms of restricted Jack polynomials Pλ(1/g) (x1, …, xk, 1, … 1). Using the operator Qz for z = 0 we give a simple derivation of a previously known integral representation for Jack polynomials.  相似文献   

2.
3.
The basic result of the paper states: Let F1, …, Fn, F1,…, Fn have proportional hazard functions with λ1 ,…, λn , λ1 ,…, λn as the constants of proportionality. Let X(1) ≤ … ≤ X(n) (X(1) ≤ … ≤ X(n)) be the order statistics in a sample of size n from the heterogeneous populations {F1 ,…, Fn}({F1 ,…, Fn}). Then (λ1 ,…, λn) majorizes (λ1 ,…, λn) implies that (X(1) ,…, X(n)) is stochastically larger than (X(1) ,…, X(n)). Earlier results stochastically comparing individual order statistics are shown to be special cases. Applications of the main result are made in the study of the robustness of standard estimates of the failure rate of the exponential distribution, when observations actually come from a set of heterogeneous exponential distributions. Further applications are made to the comparisons of linear combinations of Weibull random variables and of binomial random variables.  相似文献   

4.
We study the asymptotic behavior of the sequence of polynomials orthogonal with respect to the discrete Sobolev inner product on the unit circle

where f(Z)=(f(z1), …, f(l1)(z1), …, f(zm), …, f(lm)(zm)), A is a M×M positive definite matrix or a positive semidefinite diagonal block matrix, M=l1+…+lm+m, belongs to a certain class of measures, and |zi|>1, i=1, 2, …, m.  相似文献   

5.
In this paper a form of the Lindeberg condition appropriate for martingale differences is used to obtain asymptotic normality of statistics for regression and autoregression. The regression model is yt = Bzt + vt. The unobserved error sequence {vt} is a sequence of martingale differences with conditional covariance matrices {Σt} and satisfying supt=1,…, n {v′tvtI(v′tvt>a) |zt, vt−1, zt−1, …} 0 as a → ∞. The sample covariance of the independent variables z1, …, zn, is assumed to have a probability limit M, constant and nonsingular; maxt=1,…,nz′tzt/n 0. If (1/nt=1nΣt Σ, constant, then √nvec( nB) N(0,M−1Σ) and n Σ. The autoregression model is xt = Bxt − 1 + vt with the maximum absolute value of the characteristic roots of B less than one, the above conditions on {vt}, and (1/nt=max(r,s)+1tvt−1−rv′t−1−s) δrs(ΣΣ), where δrs is the Kronecker delta. Then √nvec( nB) N(0,Γ−1Σ), where Γ = Σs = 0BsΣ(B′)s.  相似文献   

6.
We present formulas of Rodrigues type giving the Macdonald polynomials for arbitrary partitionsλthrough the repeated application of creation operatorsBk,k=1, …, ℓ(λ) on the constant 1. Three expressions for the creation operators are derived one from the other. When the last of these expressions is used, the associated Rodrigues formula readily implies the integrality of the (q, t)-Kostka coefficients. The proofs given in this paper rely on the connection between affine Hecke algebras and Macdonald polynomials.  相似文献   

7.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

8.
Let p > 1, and dμ a positive finite Borel measure on the unit circle Γ: = {z ε C: ¦z¦ = 1}. Define the monic polynomial φn, p(z)=zn+…εPn >(the set of polynomials of degree at most n) satisfying
. Under certain conditions on dμ, the asymptotics of φn, p(z) for z outside, on, or inside Γ are obtained (cf. Theorems 2.2 and 2.4). Zero distributions of φn, p are also discussed (cf. Theorems 3.1 and 3.2).  相似文献   

9.
For a class of analytic functions f(z) defined by Laplace–Stieltjes integrals the uniform convergence on compact subsets of the complex plane of the Bruwier series (B-series) ∑n=0 λn(f) , λn(f)=f(n)(nc)+cf(n+1)(nc), generated by f(z) and the uniform approximation of the generating function f(z) by its B-series in cones |arg z|< is shown.  相似文献   

10.
The behavior of the posterior for a large observation is considered. Two basic situations are discussed; location vectors and natural parameters.Let X = (X1, X2, …, Xn) be an observation from a multivariate exponential distribution with that natural parameter Θ = (Θ1, Θ2, …, Θn). Let θx* be the posterior mode. Sufficient conditions are presented for the distribution of Θ − θx* given X = x to converge to a multivariate normal with mean vector 0 as |x| tends to infinity. These same conditions imply that E(Θ | X = x) − θx* converges to the zero vector as |x| tends to infinity.The posterior for an observation X = (X1, X2, …, Xn is considered for a location vector Θ = (Θ1, Θ2, …, Θn) as x gets large along a path, γ, in Rn. Sufficient conditions are given for the distribution of γ(t) − Θ given X = γ(t) to converge in law as t → ∞. Slightly stronger conditions ensure that γ(t) − E(Θ | X = γ(t)) converges to the mean of the limiting distribution.These basic results about the posterior mean are extended to cover other estimators. Loss functions which are convex functions of absolute error are considered. Let δ be a Bayes estimator for a loss function of this type. Generally, if the distribution of Θ − E(Θ | X = γ(t)) given X = γ(t) converges in law to a symmetric distribution as t → ∞, it is shown that δ(γ(t)) − E(Θ | X = γ(t)) → 0 as t → ∞.  相似文献   

11.
Denote by xn,k(α,β) and xn,k(λ)=xn,k(λ−1/2,λ−1/2) the zeros, in decreasing order, of the Jacobi polynomial P(α,β)n(x) and of the ultraspherical (Gegenbauer) polynomial Cλn(x), respectively. The monotonicity of xn,k(α,β) as functions of α and β, α,β>−1, is investigated. Necessary conditions such that the zeros of P(a,b)n(x) are smaller (greater) than the zeros of P(α,β)n(x) are provided. A. Markov proved that xn,k(a,b)<xn,k(α,β) (xn,k(a,b)>xn,k(α,β)) for every n and each k, 1kn if a>α and b<β (a<α and b>β). We prove the converse statement of Markov's theorem. The question of how large the function fn(λ) could be such that the products fn(λ)xn,k(λ), k=1,…,[n/2] are increasing functions of λ, for λ>−1/2, is also discussed. Elbert and Siafarikas proved that fn(λ)=(λ+(2n2+1)/(4n+2))1/2 obeys this property. We establish the sharpness of their result.  相似文献   

12.
We give a direct formulation of the invariant polynomials μGq(n)(, Δi,;, xi,i + 1,) characterizing U(n) tensor operators p, q, …, q, 0, …, 0 in terms of the symmetric functions Sλ known as Schur functions. To this end, we show after the change of variables Δi = γi − δi and xi, i + 1 = δi − δi + 1 thatμGq(n)(,Δi;, xi, i + 1,) becomes an integral linear combination of products of Schur functions Sα(, γi,) · Sβ(, δi,) in the variables {γ1,…, γn} and {δ1,…, δn}, respectively. That is, we give a direct proof that μGq(n)(,Δi,;, xi, i + 1,) is a bisymmetric polynomial with integer coefficients in the variables {γ1,…, γn} and {δ1,…, δn}. By making further use of basic properties of Schur functions such as the Littlewood-Richardson rule, we prove several remarkable new symmetries for the yet more general bisymmetric polynomials μmGq(n)1,…, γn; δ1,…, δm). These new symmetries enable us to give an explicit formula for both μmG1(n)(γ; δ) and 1G2(n)(γ; δ). In addition, we describe both algebraic and numerical integration methods for deriving general polynomial formulas for μmGq(n)(γ; δ).  相似文献   

13.
Let A = (aij) be an n × n Toeplitz matrix with bandwidth k + 1, K = r + s, that is, aij = aji, i, J = 1,… ,n, ai = 0 if i > s and if i < -r. We compute p(λ)= det(A - λI), as well as p(λ)/p′(λ), where p′(λ) is the first derivative of p(λ), by using O(k log k log n) arithmetic operations. Moreover, if ai are m × m matrices, so that A is a banded Toeplitz block matrix, then we compute p(λ), as well as p(λ)/p′(λ), by using O(m3k(log2 k + log n) + m2k log k log n) arithmetic operations. The algorithms can be extended to the computation of det(A − λB) and of its first derivative, where both A and B are banded Toeplitz matrices. The algorithms may be used as a basis for iterative solution of the eigenvalue problem for the matrix A and of the generalized eigenvalue problem for A and B.  相似文献   

14.
Let wλ(x)(1−x2)λ−1/2 and Pn(λ) be the ultraspherical polynomials with respect to wλ(x). Then we denote En+1(λ) the Stieltjes polynomials with respect to wλ(x) satisfyingIn this paper, we give estimates for the first and second derivatives of the Stieltjes polynomials En+1(λ) and the product En+1(λ)Pn(λ) by obtaining the asymptotic differential relations. Moreover, using these differential relations we estimate the second derivatives of En+1(λ)(x) and En+1(λ)(x)Pn(λ)(x) at the zeros of En+1(λ)(x) and the product En+1(λ)(x)Pn(λ)(x), respectively.  相似文献   

15.
Let Vi) (resp., V(−Λj)) be a fundamental integrable highest (resp., lowest) weight module of . The tensor product Vi)V(−Λj) is filtered by submodules , n≥0, nij mod 2, where viVi) is the highest vector and is an extremal vector. We show that Fn/Fn+2 is isomorphic to the level 0 extremal weight module V(n1−Λ0)). Using this we give a functional realization of the completion of Vi)V(−Λj) by the filtration (Fn)n≥0. The subspace of Vi)V(−Λj) of -weight m is mapped to a certain space of sequences (Pn,l)n≥0,nijmod2,n−2l=m, whose members Pn,l=Pn,l(X1,…,Xlz1,…,zn) are symmetric polynomials in Xa and symmetric Laurent polynomials in zk, with additional constraints. When the parameter q is specialized to , this construction settles a conjecture which arose in the study of form factors in integrable field theory.  相似文献   

16.
This paper studies the Multi-Resolution Analyses of multiplicity d (d *), that is, the families (Vn)n of closed subspaces in 2( ) such that Vn Vn + 1, Vn + 1 = DVn, where Dƒ(x) = ƒ(2x), and such that there exists a Riesz basis for V0 of the form {φi(· − k), i = 1, . . . , d,k }, with φ1, . . . , φd V0. Using the Fourier transform, we prove that (λ) = t[ 1(λ), . . . , d(λ)] = H(λ/2) (λ/2), where H is in the set d of continuous 1-periodic functions taking values in (d, ). If d = 1, the definition corresponds to the standard Multi-Resolution Analyses, and one can characterize the regular 1-periodic complex-valued functions H (called, then, scaling filters) which yield a Multi-Resolution Analysis. In this paper, we generalize this study to d ≥ 2 by giving conditions on H d so that there exists = t[ 1, . . . , d] in 2( , d) solution of (λ) = H(λ/2) (λ/2), and so that the integer translates of φ1, . . . , φd form a Riesz family. Then, the latter span the space V0 of a Multi-Resolution Analysis of multiplicity d. We show that the conditions on H focus on the zeros of det H(·) and on simple spectral hypotheses for the operator PH defined on d by PHF(λ) = H(λ/2)F(λ/2)H(λ/2)* + H(λ/2 + 1/2)F(λ/2 + 1/2)H(λ/2 + 1/2)*. Finally, we explore connections with the order r dyadic interpolation schemes, where r *.  相似文献   

17.
In this paper we prove three conjectures of Revers on Lagrange interpolation for fλ(t)=|t|λ,λ>0, at equidistant nodes. In particular, we describe the rate of divergence of the Lagrange interpolants LN( fλ,t) for 0<|t|<1, and discuss their convergence at t=0. We also establish an asymptotic relation for max|t|1| |t|λLN( fλ,t)|. The proofs are based on strong asymptotics for |t|λLN( fλ,t), 0|t|<1.  相似文献   

18.
Let Λ(λj)j=0 be a sequence of distinct real numbers. The span of {xλ0xλ1, …, xλn} over is denoted by Mn(Λ)span{xλ0xλ1, …, xλn}. Elements of Mn(Λ) are called Müntz polynomials. The principal result of this paper is the following Markov-type inequality for products of Müntz polynomials. T 2.1. LetΛ(λj)j=0andΓ(γj)j=0be increasing sequences of nonnegative real numbers. Let

Then

18(n+m+1)(λnm).In particular ,

Under some necessary extra assumptions, an analog of the above Markov-type inequality is extended to the cases when the factor x is dropped, and when the interval [0, 1] is replaced by [ab](0, ∞).  相似文献   

19.
Let Bn( f,q;x), n=1,2,… be q-Bernstein polynomials of a function f : [0,1]→C. The polynomials Bn( f,1;x) are classical Bernstein polynomials. For q≠1 the properties of q-Bernstein polynomials differ essentially from those in the classical case. This paper deals with approximating properties of q-Bernstein polynomials in the case q>1 with respect to both n and q. Some estimates on the rate of convergence are given. In particular, it is proved that for a function f analytic in {z: |z|<q+} the rate of convergence of {Bn( f,q;x)} to f(x) in the norm of C[0,1] has the order qn (versus 1/n for the classical Bernstein polynomials). Also iterates of q-Bernstein polynomials {Bnjn( f,q;x)}, where both n→∞ and jn→∞, are studied. It is shown that for q(0,1) the asymptotic behavior of such iterates is quite different from the classical case. In particular, the limit does not depend on the rate of jn→∞.  相似文献   

20.
We study the asymptotic behavior of the maximal multiplicity μn = μn(λ) of the parts in a partition λ of the positive integer n, assuming that λ is chosen uniformly at random from the set of all such partitions. We prove that πμn/(6n)1/2 converges weakly to max jXj/j as n→∞, where X1, X2, … are independent and exponentially distributed random variables with common mean equal to 1.2000 Mathematics Subject Classification: Primary—05A17; Secondary—11P82, 60C05, 60F05  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号