首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance liquid chromatographic (HPLC) method for the determination of a new H2 receptor antagonist, 3-amino-5-[3-[4-(piperidinoindanyloxy)]propylamino] -1-methyl-1H-1,2,4-triazole (I), in human plasma and urine was developed. The method employs liquid-liquid extraction of the analyte and an internal standard and chromatographic separation using an alkylphenyl-bonded HPLC column. The total time of chromatography was less than 10 min. Sensitivity was 10 ng/ml for the plasma analysis and 1 microgram/ml for the analysis of I from urine. The coefficients of variation, based on interpolated concentrations, were less than 10%. The method was used for more than 5000 samples during clinical pharmacokinetic studies.  相似文献   

2.
A liquid chromatographic method using a solid-phase extraction procedure for the quantification of sotalol in plasma and urine is described. Sotalol is eluted from an extraction column with ethyl acetate-acetonitrile (1:2) and, after separation by reversed-phase high-performance liquid chromatography on a mu Bondapak C18 column, is quantified by fluorescence detection at excitation and emission wavelengths of 240 and 310 nm, respectively. The method has been demonstrated to be linear over the concentration ranges 10-6000 ng/ml in plasma and 0.5-100 micrograms/ml in urine. Mean inter-assay accuracy of the method for plasma ranged from 93 to 100% and for urine from 102 to 114%; precision ranged from 0.5 to 1.6% for plasma over a concentration range of 200-4000 ng/ml and for urine from 0.7 to 2.0% at concentrations of 2-50 micrograms/ml. Mass spectrometry confirmed the presence of sotalol in isolated chromatographic fractions of plasma and urine extracts from subjects given sotalol orally.  相似文献   

3.
A rapid, sensitive and selective high-performance liquid chromatographic (HPLC) assay was developed for the determination of cibenzoline (CipralanTM) in human plasma and urine. The assay involves the extraction of the compound into benzene from plasma or urine buffered to pH 11 and HPLC analysis of the residue dissolved in acetonitrile-phosphate buffer (0.015 mol/l, pH 6.0) (80:20). A 10-microns ion-exchange (sulfonate) column was used with acetonitrile-phosphate buffer (0.015 mol/l, pH 6.0) (80:20) as the mobile phase. UV detection at 214 nm was used for quantitation with the di-p-methyl analogue of cibenzoline as the internal standard. The recovery of cibenzoline in the assay ranged from 60 to 70% and was validated in human plasma and urine in the concentration range of 10-1000 ng/ml and 50-5000 ng/ml, respectively. A normal-phase HPLC assay was developed for the determination of the imidazole metabolite of cibenzoline. The assays were applied to the determination of plasma and urine concentrations of cibenzoline and trace amounts of its imidazole metabolite following oral administration of cibenzoline succinate to two human subjects.  相似文献   

4.
A single high-performance liquid chromatographic (HPLC) assay for the quantitative determination of dilevalol, the R,R isomer of labetalol, was developed for both plasma and urine. A significantly improved limit of detection for dilevalol in plasma was accomplished by extensive modification of an HPLC assay originally developed in our laboratory for labetalol. This simplified method is readily adaptable to urine and represents the first reported HPLC assay for the quantitative determination of dilevalol in this biofluid. Drug was recovered from plasma or urine by partition into diethyl ether under mildly alkaline conditions and back-extraction into dilute acid. Reversed-phase separation of dilevalol and the internal standard was accomplished on a 150 X 4.1 mm column commercially packed with a spherical (5 micron) macroporous copolymer (PRP-1). No interferences were observed in extracts obtained from drug-free plasma or urine. Selectivity for dilevalol in the presence of other beta-blockers was established. This method demonstrated a linear detector response to concentrations of unchanged drug typically observed in urine and plasma following once-a-day treatment with dilevalol hydrochloride (100-800 mg). The lowest limit of reliable quantitation was established at 1 ng/ml in plasma. The intra-assay precision (coefficient of variation) remained less than 6% at all concentrations evaluated from 1 to 800 ng/ml. In urine, the lowest limit of quantitation was validated to 20 ng/ml where the intra-assay precision (coefficient of variation) for unchanged drug was less than 4% at all concentrations evaluated up to 400 ng/ml. This method is suitable for routine quantitation of unchanged drug in human plasma and urine following the administration of therapeutically effective doses of dilevalol hydrochloride.  相似文献   

5.
A high-performance liquid chromatographic method for the determination of the novel indoloquinone antitumour agent E09, 3-hydroxymethyl-5-aziridinyl-1-methyl-2-(1H-indole-4,7-dione)prop-beta-e n-alpha - ol, in mouse plasma and urine is described. Following protein precipitation by means of methanol (2 volumes), separation and quantification of parent drug, metabolites and internal standard E012 (5-morpholine substituted analogue) were achieved on a 5-microns Resolve C18 Rad-Pak with a 15-min linear gradient of 10-30% acetonitrile in a 0.02 M pH 7.4 sodium phosphate buffer with UV detection at 280 and 310 nm. The utility of the assay is also demonstrated for the aziridine ring-opened analogue E05A. 3-hydroxymethyl-5-beta-hydroxyethylamino-2-(1H-indole-4,7-dione)pr op-beta-en- alpha-ol. Plots of area ratios of analytes versus internal standard were linear in the range 50-15,000 ng/ml. The detection limit for indoloquinones in plasma was ca. 30 ng/ml. The within-assay and day-to-day variation were consistently lower than 12.5%. The assay was applied in preliminary pharmacokinetic investigations. One minor metabolite of E09 could be identified; further metabolites were characterized by ultraviolet-visible spectra.  相似文献   

6.
A simple and sensitive high-performance liquid chromatographic procedure to determine spironolactone and its three major metabolites in biological specimens is described. The assay involves sequential extraction on C18 and CN solid phases, and subsequent separation on a reversed-phase column. In plasma samples, spironolactone and its metabolites were completely separated within 8 min using an isocratic mobile phase, while in urine samples a methanol gradient was necessary to achieve a good separation within 14 min. Recoveries for all analytes were greater than 80% in plasma and 72% in urine. Linear responses were observed for all compounds in the range 6.25-400 ng/ml for plasma and 31.25-2000 ng/ml for urine. The plasma and urine methods were precise (coefficient of variation from 0.8 to 12.5%) and accurate (-12.1% to 7.4% of the nominal values) for all compounds. The assay proved to be suitable for the pharmacokinetic study of spironolactone in healthy human subjects.  相似文献   

7.
A sensitive and selective method for the determination of the pyridinium metabolite (HPP+) derived from the antipsychotic drug haloperidol (HP) in brain tissue, plasma and urine using high-performance liquid chromatography with fluorescence detection is described. The HPP+ present in biological samples was extracted using a Sep-Pak C18 cartridge. Recoveries of HPP+ ranged from 78 to 90%. Final separation and quantitative estimations of HPP+ were achieved on a C18 reversed-phase column employing a mobile phase of acetonitrile-30 mM ammonium acetate (40:60, v/v) containing 10 mM triethylamine and adjusted to pH 3 with trifluoroacetic acid. The fluorescence detection utilized an excitation wavelength of 304 nm and an emission wavelength of 374 nm. Standard curves were linear in the range of 2.5-100 ng/ml for brain tissue homogenate and plasma samples and 10-500 ng/ml for urine samples. The detection limit of HPP+ was about 1 ng/ml in all biological samples. The concentrations of HPP+ in brain tissue, plasma and urine from HP-treated rats were determined using this method.  相似文献   

8.
Mesocarb metabolism in humans is the target of this investigation. A high-performance liquid chromatographic (LC) method with electrospray ionization (ESI)-ion trap mass spectrometric (MS) detection ion trap "SL" for the simultaneous determination of mesocarb and its metabolites in plasma and urine is developed and validated. Ten metabolites and the parent drug are detected in human urine, and only four in human plasma, after the administration of a single oral dose of 10 mg of mesocarb (Sydnocarb, two 5-mg tablets). Seven of this metabolites have been found for the first time. The confirmation of the results and identification of all the metabolites except amphetamine is performed by LC-MS, LC-MS-MS, and LC-MS3. In the case of doping analysis, the reliable detection time for mesocarb (long-life dihydroxymesocarb metabolites of mesocarb) is approximately 10-11 days after the administration of the drug, which is a significant increase over the existing data. The detection of amphetamine in plasma and urine is made using simple flow-injection analysis without a chromatographic separation. The addition-calibration method is used with plasma and urine. The mean recoveries from plasma are 49.2% and 57.4% for mesocarb concentrations of 33.0 and 66.0 ng/mL, respectively, whereas the recoveries from human urine are 76.9% and 81.4% for concentrations of 1 and 2 ng/mL, respectively. Calibration curves (using an internal standard method) are linear (r2>0.9969) for concentrations 0.6 to 67 ng/mL and from 0.05 to 5 ng/mL in plasma and urine, respectively. Both intra- and interassay precision of plasma control samples at 3, 40, and 55 ng/mL are lower than 6.2%, and the concentrations do not deviate for more than -3.4% to 7.3% from their nominal values. In urine, intra- and interassay precision of control samples at 0.08, 1.5, and 3.0 ng/mL is lower than 14.1%, with concentrations not deviating for more than -11.3% to 13.7% from their nominal values. The plasma disappearance curve of the parent drug is obtained. The major pharmacokinetic parameters are calculated.  相似文献   

9.
A valid, sensitive high-performance liquid chromatographic technique is reported for the separation of the two enantiomers of metoprolol in human plasma. The procedure involves pre-column derivatization with the homochiral reagent S-(+)-1-(1-naphthyl)ethyl isocyanate. Once formed, the diastereomers are separated using normal-phase high-performance liquid chromatography. Fluorescence detection (220 nm excitation; no emission filter) was utilized, resulting in baseline resolution (Rs greater than 1.5). The peaks corresponding to metoprolol enantiomers were free from interference throughout the examined range of 5-500 ng/ml; accuracy and precision were within approximately 10%. Analysis of a plasma sample collected from a healthy volunteer demonstrated that the assay is applicable to clinical studies.  相似文献   

10.
Sulmazole (2-[(2-methoxy-4-methylsulfinyl)phenyl]-3H-imidazo [4,5-b] pyridine; AR-L 115 BS) and two metabolites (sulfide, sulfone) were quantified from directly injected body fluids (plasma, urine, bile) after high-performance liquid chromatographic separation. No internal standard is needed, which is particularly advantageous when fluorescence detection is established. After automated pre-column enrichment on Corasil C18 (37-50 microns), the parent compound and biotransformation products could be backflushed and chromatographed on ODS-Hypersil (5 microns) with a mixture of 0.075 mol/l phosphate buffer-acetonitrile (2:1), an elution rate of 2.0 ml/min and fluorimetric detection (lambda ex = 330 nm; lambda em = 370 nm). A hydroxylated metabolite of sulmazole which occurs preferentially in urine (and bile) can be quantified in the above-mentioned solvent system diluted 1:1 with water, but with different fluorescence characteristics (lambda ex = 345 nm; lambda em = 515 nm). The assay was linear in the range 8-1000 ng/ml. The lower limit of detection was about 8 ng/ml or 80 pg with coefficients of variation between 0.4 and 5.8% for sulmazole.  相似文献   

11.
Sensitive and selective methods have been developed for quantitation of the novel anticonvulsant remacemide in rat and dog plasma and urine. The methods employed liquid-liquid extraction (urine) or ion-exchange solid-phase extraction (plasma), with an internal standard, followed by high-performance liquid chromatography with ultraviolet detection. The detection limit for both methods was 10 ng/ml. Overall accuracy was 0.00% for plasma and -1.4% for urine with a precision of 6.04 and 3.87% for plasma and urine, respectively. The standard curves were linear for both plasma and urine over a wide concentration range (9.96-2490 ng/ml). The plasma method was also applied to measurement of in vitro plasma protein binding of remacemide in rat, dog and human plasma.  相似文献   

12.
The quantitative enantiospecific determination of the beta 1-selective adrenergic antagonist (R,S)-celiprolol in human plasma and urine is described. It involves a two-step liquid-liquid extraction of celiprolol from biological material and separation of the underivatized enantiomers by high-performance liquid chromatography on a chiral stationary phase (cellulose tris-3,5-dimethylphenyl carbamate, coated on silica gel) with fluorimetric detection. R-(+)-Propranolol was used as an internal standard. The detection limits of 1.5 ng/ml enantiomer in plasma and 2.5 ng/ml enantiomer in urine at signal-to-noise ratios higher than 3 permit the performance of pharmacokinetic studies after therapeutic doses.  相似文献   

13.
A relatively simple, sensitive and rapid high-performance liquid chromatographic method is described for measuring the anticancer drug 5-fluorouracil (5-FU) in human plasma and urine. The procedure includes liquid-liquid extraction using ethyl acetate-methanol (95:5) and preparative column chromatography to separate 5-FU from constituents normally occurring in these biological samples. The columns contained a specially modified form of diatomaceous earth, which requires no pre-conditioning washes. Reversed-phase high-performance liquid chromatography was performed on a C18 column (70 mm x 4.6 mm I.D.) with a mobile phase of water-methanol (95:5) and ultraviolet detection (268 nm). The overall recovery from plasma and urine was 91 and 94%, respectively, at the concentration of 50 ng/ml. The determination limit of the assay for 5-FU was 10 ng/ml of plasma and urine. Concentrations of 5-FU between 10 and 500 ng/ml were measured in plasma and urine with a relative standard deviation of 6.8%. In order to evaluate the procedure, plasma and urine samples from three patients treated with 5-FU by continuous intravenous perfusion, were investigated.  相似文献   

14.
A selective and sensitive high-performance liquid chromatographic method for determination of intact glibenclamide in human plasma or urine has been developed. With glibornuride as internal standard, acid-buffered plasma or urine was extracted with benzene. The organic layer was evaporated and the residue was dissolved in equilibrated mobile phase (acetonitrile-phosphate buffer 0.01 M pH 3.5, 50:50). An aliquot of 20 microliters was chromatographed on a Spherisorb ODS reversed-phase column, and quantitation was achieved by monitoring the ultraviolet absorbance at 225 nm. The response was linear (0-1000 ng/ml) and the detection limit was 5-10 ng/ml in plasma or urine. The within-assay variation was less than or equal to 10%. No interferences from metabolites or endogenous constituents could be noted. The utility of the method was demonstrated by analysing glibenclamide in samples from diabetic subjects on therapeutic doses of the drug.  相似文献   

15.
The quantitative determination of the quaternary spasmolytic compound ciclotropium and its metabolite N-isopropyltropinium is described for human plasma and urine. The analytical procedure consists of ion-pair extraction from biological material, alkaline hydrolysis, subsequent derivatization with the fluorophor flunoxaprofen chloride and separation by high-performance liquid chromatography on a reversed-phase column with fluorimetric monitoring. The detection limits of 0.5 ng/ml in plasma and 10 ng/ml in urine at signal-to-noise ratios higher than 3 permit the determination of pharmacokinetic parameters after therapeutic doses.  相似文献   

16.
A high-performance liquid chromatographic method for the determination of R- and S-prenylamine in human plasma and urine is described. It involves a two-step liquid-liquid extraction of prenylamine from biological material and preparation of diastereomeric urea derivatives with R-(-)-naphthylethyl isocyanate, a chiral fluorescence marker. Separation and quantitation of the diastereomeric prenylamine derivatives are carried out by a reversed-phase high-performance liquid chromatographic system with fluorimetric detection. The limit of determination is less than 2 ng of enantiomer per ml of urine and less than 1 ng of enantiomer per ml of plasma. A preliminary kinetic study on one healthy volunteer who had received a single oral dose of racemic prenylamine (100-mg film tablet) showed distinctly higher plasma and urine concentrations of the R-enantiomer.  相似文献   

17.
A high-performance liquid chromatographic method has been developed which enables sensitive determination of captopril and its mixed disulphides in plasma and urine after oral administration of a new antihypertensive agent, 1-(D-3-acetylthio-2-methylpropanoyl)-L-prolyl-L-phenylalanine (DU-1219, I). Captopril is derivatized with a new reagent, N-(4-benzoylphenyl)maleimide and the derivative is extracted with chloroform and assayed using a liquid chromatograph equipped with an ultraviolet detector at 254 nm. Mixed disulphides of captopril with thiol compounds such as cysteine, glutathione and plasma proteins are reduced with tributylphosphine to form captopril, followed by derivatization with N-(4-benzoylphenyl)maleimide. Accurate determinations are possible over a concentration range of 10-500 ng/ml captopril in plasma, and 100-2500 ng/ml captopril in urine. The coefficients of variation of captopril in plasma (200 ng/ml) and urine (500 ng/ml) are 3.7% and 2.6%, respectively, and those of mixed disulphides of captopril are similar to those of captopril. Plasma levels and urinary excretion of captopril and its mixed disulphides in healthy volunteers following single oral administration of I (50 mg) have also been determined.  相似文献   

18.
A stereospecific high-performance liquid chromatographic method for the quantification of (-)- and (+)-tertatolol in plasma and urine is described. The method involves solid-phase extraction followed by derivatization with S(+)-naphthylethylisocyanate to form the urea derivative, which is more sensitive to fluorescence detection. The separation of the diastereomeric derivatives was performed by reversed-phase high-performance liquid chromatography. Fluorimetric detection (lambda excitation = 220 nm, lambda emission = 320 nm) allows the quantification of tertatolol enantiomers down to 6 ng/ml. The assay was used to study the pharmacokinetic profile of tertatolol enantiomers following oral administration of racemic tertatolol; preliminary results suggest enantioselective absorption and/or disposition of tertatolol.  相似文献   

19.
In the present study, hollow fiber liquid phase microextraction (HF-LPME) based on pH gradient and electromembrane extraction (EME) coupled with high-performance liquid chromatography (HPLC) was compared for the extraction of ephedrine from biological samples. The influences of fundamental parameters affecting the extraction efficiency of ephedrine were studied and optimized for both methods. Under the optimized conditions, preconcentration factors of 120 and 35 for urine and 51 and 8 for human plasma were obtained using EME and HF-LPME, respectively. The calibration curves showed good linearity for urine and plasma samples by both methods with the coefficient of estimations higher than 0.98. The limits of detection were obtained 5 and 10 ng mL(-1) using EME and 60 and 200 ng mL(-1) by HF-LPME for urine and plasma samples respectively. The relative standard deviations of the analysis were found in the range of 5.2-8.6% (n=3). The results showed that in comparison with HF-LPME based on pH gradient, EME is a much more effective transport process, providing high extraction efficiencies in very short time.  相似文献   

20.
A high-performance liquid chromatographic method with electrochemical detection was developed for the determination of exifone in human plasma and urine. Exifone was extracted from acidified plasma or neutralized urine with diethyl ether and the evaporated extracts were analysed on a C18 reversed-phase column. The compound was eluted in about 8 min with acetonitrile-0.3 M orthophosphoric acid (15:85, v/v) at a flow-rate of 0.9 ml/min. This method gave accurate and reproducible results; the calibration graphs were linear (r greater than 0.99) over the range of 2.8-360 nmol/l for plasma and 0.18-36 mumol/l for urine, and concentrations as low as 1 nmol/l in plasma could be quantified. These results allowed this assay to be used for determinations in single-dose pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号