首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yetkin G 《催化学报》2007,28(6):489-491
在三乙胺存在下,在离子液体([bmim]I和[bmim]PF6)中进行了各种卤代烃对胺类化合物中氨基的选择性烷基化反应.反应在相对温和的条件下进行,转化率和选择性优异.离子液体可以回收并重复使用.  相似文献   

2.
Dynamical properties of polymer electrolytes based on poly(ethylene oxide) (PEO) and ionic liquids of 1-alkyl-3-methylimidazolium cations were calculated by molecular dynamics simulations with previously proposed models [L. T. Costa and M. C. Ribeiro, J. Chem. Phys. 124, 184902 (2006)]. The effect of changing the ionic liquid concentration, temperature, and the 1-alkyl-chain lengths, [1,3-dimethylimidazolium]PF(6) and [1-butyl-3-methylimidazolium]PF(6) ([dmim]PF(6) and [bmim]PF(6)), was investigated. Cation diffusion coefficient is higher than those of anion and oxygen atoms of PEO chains. Ionic mobility in PEO[bmim]PF(6) is higher than in PEO[dmim]PF(6), so that the ionic conductivity kappa of the former is approximately ten times larger than the latter. The ratio between kappa and its estimate from the Nernst-Einstein equation kappa/kappa(NE), which is inversely proportional to the strength of ion pairs, is higher in ionic liquid polymer electrolytes than in polymer electrolytes based on inorganic salts with Li(+) cations. Calculated time correlation functions corroborate previous evidence from the analysis of equilibrium structure that the ion pairs in ionic liquid polymer electrolytes are relatively weak. Structural relaxation at distinct spatial scales is revealed by the calculation of the intermediate scattering function at different wavevectors. These data are reproduced with stretched exponential functions, so that temperature and wavevector dependences of best fit parameters can be compared with corresponding results for polymer electrolytes containing simpler ions.  相似文献   

3.
Ab initio molecular dynamics (AIMD) studies have been carried out on liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and its mixture with CO2 using the Car-Parrinello molecular dynamics (CPMD) method. Results from AIMD and empirical potential molecular dynamics (MD) have been compared and were found to differ in some respects. With a strong resemblance to the crystal, the AIMD simulated neat liquid exhibits many cation-anion hydrogen bonds, a feature that is almost absent in the MD results. The anions were observed to be strongly polarized in the condensed phase. The addition of CO2 increased the probability of this hydrogen bond formation. CO2 molecules in the vicinity of the ions of [bmim][PF6] exhibit larger deviations from linearity in their instantaneous configurations. The polar environment of the liquid induces a dipole moment in CO2, lifting the degeneracy of its bending mode. The calculated splitting in the vibrational mode compares well with infrared spectroscopic data. The solvation of CO2 in [bmim][PF6] is primarily facilitated by the anion, as seen from the radial and spatial distribution functions. CO2 molecules were found to be aligned tangential to the PF6 spheres with their most probable location being the octahedral voids of the anion. The structural data obtained from AIMD simulations can serve as a benchmark to refine interaction potentials for this important room-temperature ionic liquid.  相似文献   

4.
The structure and diffusion behavior of 1‐butyl‐3‐methylimidazolium ([bmim]+) ionic liquids with [Cl]?, [PF6]?, and [Tf2N]? counterions near a hydrophobic graphite surface are investigated by molecular dynamics simulation over the temperature range of 300–800 K. Near the graphite surface the structure of the ionic liquid differs from that in the bulk and it forms a well‐ordered region extending over 30 Å from the surface. The bottom layer of the ionic liquid is stable over the investigated temperature range due to the inherent slow dynamics of the ionic liquid and the strong Coulombic interactions between cation and anion. In the bottom layer, diffusion is strongly anisotropic and predominantly occurs along the graphite surface. Diffusion perpendicular to the interface (interfacial mass transfer rate kt) is very slow due to strong ion–substrate interaction. The diffusion behaviors of the three ionic liquids in the two directions all follow an Arrhenius relation, and the activation barrier increases with decreasing anion size. Such an Arrhenius relation is applied to surface‐adsorbed ionic liquids for the first time. The ion size and the surface electrical charge density of the anions are the major factors determining the diffusion behavior of the ionic liquid adjacent to the graphite surface.  相似文献   

5.
Atomistic molecular dynamics simulations were performed on 1-butyl-3-methyl-imidazolium azide [bmim][N(3)], 1-butyl-2,3-dimethylimidazolium azide [bmmim][N(3)], and 1-butynyl-3-methyl-imidazolium azide [bumim][N(3)] ionic liquids. The many-body polarizable APPLE&P force field was augmented with parameters for the azide anion and the bumim cation. Good agreement between the experimentally determined and simulated crystal structure of [bumim][N(3)] as well as the liquid-state density and ionic conductivity of [bmmim][N(3)] were found. Methylation of bmim (yielding bmmim) resulted in dramatic changes in ion structuring in the liquid and slowing of ion motion. Conversely, replacing the butyl group of bmim with the smaller 2-butynyl group resulted in an increase of ion dynamics.  相似文献   

6.
We have performed molecular dynamics simulations to determine the densities and heat of vaporization as well as structural information for the 1-alkyl-3-methyl-imidazolium based ionic liquids [amim][Cl] and [amim][BF(4)] in the temperature range from 298 to 363 K. In this simulation study, we used an united atom model of Liu et al. [Phys. Chem. Chem. Phys. 8, 1096 (2006)] for the [emim(+)] and [bmim(+)] cations, which we have extended for simulation in [hmim]-ILs and combined with parameters of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] for the [Cl(-)] anion. Our simulation results prove that both the original united atoms approach by Liu et al. and our extension yield reasonable predictions for the ionic liquid with a considerably reduced computational expense than that required for all atoms models. Radial distribution functions and spatial distribution functions where employed to analyze the local structure of this ionic liquid, and in which way it is influenced by the type of the anion, the size of the cation, and the temperature. Our simulations give evidence for the occurrence of tail aggregations in these ionic liquids with increasing length of the side chain and also increasing temperature.  相似文献   

7.
Microscopic structures of room temperature ionic liquid (IL) [bmim][PF6] on hydrophobic graphite surfaces have been studied in detail by molecular dynamics simulation. It is clearly shown that both the mass and electron densities of the surface adsorbed ionic liquid are oscillatory, and the first peak adjacent to the graphite surface is considerably higher than others, corresponding to a solidlike IL bottom layer of 6 angstroms thick. Three IL layers are indicated between the graphite surface and the inner bulk IL liquid. The individually simulated properties of single-, double-, and triple-IL layers on the graphite surface are very similar to those of the layers between the graphite surface and the bulk liquid, indicating an insignificant effect of vapor-IL interface on the ordered IL layers. The simulation also indicates that the imidazolium ring and butyl tail of the cation (bmim+) of the IL bottom layer lie flat on the graphite surface.  相似文献   

8.
设计合成了由1-丁基-3-甲基咪唑阳离子与咪唑阴离子搭配的[bmim]Im新型碱性离子液体并对其碱性进行研究.[bmim]Im离子液体的碱性与[bmim]OH的碱性接近且强于[bmim]OAc.在水溶液及室温条件下,2%的[bmim]Im离子液体对系列芳香醛与活泼的亚甲基化合物之间的Knoevenagel缩合反应具有较好的催化性能,目标产物的收率达到86%~95%,选择性为100%.同时,该催化剂体系具有良好的循环性能.  相似文献   

9.
A new “task-specific” ionic liquid (TSIL), 1-n-butyl-3-methylimidazolium thiocyanate ([bmim]SCN), has been prepared and used for the first time as the medium as well as reactant for the synthesis of alkyl thiocyanates from the corresponding alkyl halides by thiocyanate-halide exchange at room temperature. The alkyl thiocyanate products can be easily isolated from the reaction mixture by simple extraction and the ionic liquid 1-n-butyl-3-methylimidazolium halide may be reused for the synthesis of the ionic liquid [bmim]SCN and recycled for further use.  相似文献   

10.
Owing to numerous new applications, the interest in “task‐specific” ionic liquids increased significantly over the last decade. But, unfortunately, the imidazolium‐based ionic liquids (by far the most frequently used cations) have serious limitations when it comes to modifications of their properties. The new generation of ionic liquids, called tunable aryl–alkyl ionic liquids (TAAILs), replaces one of the two alkyl chains on the imidazolium ring with an aryl ring which allows a large degree of functionalization. Inductive, mesomeric, and steric effects as well as potentially also π π and π π+ interactions provide a wide range of possibilities to tune this new class of ILs. We investigated the influence of electron‐withdrawing and ‐donating substituents at the para‐position of the aryl ring (NO2, Cl, Br, EtO(CO), H, Me, OEt, OMe) by studying the changes in the melting points of the corresponding bromide and bis(trifluoromethanesulfonyl)imide, (N(Tf)2), salts. In addition, we calculated (B3LYP/6‐311++G(d,p)) the different charge distributions of substituted 1‐aryl‐3‐propyl‐imidazolium cations to understand the experimentally observed effects. The results indicated that the presence of electron‐donating and ‐withdrawing groups leads to strong polarization effects in the cations.  相似文献   

11.
室温离子液体由于其极低的蒸汽压、比较好的热稳定性和化学稳定性、良好的分子结构与性能的可设计性等优点,作为一种新型的环境友好溶剂在很多领域有着广泛的应用.对于离子液体的微观结构和微观性能的研究是设计新型离子液体以及扩展离子液体应用的关键.本文通过荧光探针分子香豆素153(C153)的转动动力学和对微观环境敏感的荧光探针分子1, 3-二(1-芘基)丙烷(BPP)的稳态荧光光谱,探测和表征了烷基取代的离子液体1-丁基-3-甲基咪唑六氟磷酸盐([bmim][PF6])和与其具有相似结构的醚键官能化的离子液体1-甲氧基乙基-3-甲基咪唑六氟磷酸盐([moemim][PF6])的微观结构和微粘度. C153探针分子在离子液体[bmim][PF6]中的转动过程具有快、慢两个组分表明离子液体[bmim][PF6]内部存在松散和紧密的两种结构微区;而C153探针分子在离子液体[moemim][PF6]中的转动动力学只存在一种过程,说明醚键的引入使得[moemim][PF6]内部趋于一种类型的微环境.通过C153探针分子的转动时间研究发现,醚键官能化的离子液体[moemim][PF6]的微粘度小于烷基链取代的离子液体[bmim][PF6],同时通过BPP探针分子的二聚体激基复合物(excimer)与单体(monomer)荧光发射强度的比值(IE/IM)研究也证明这一结果.醚键的引入使得离子液体[moemim][PF6]相对于离子液体[bmim][PF6],侧链的极性更大、柔顺性更好,同时醚键有可能作为氢键的受体与阳离子形成氢键从而削弱离子液体中阴、阳离子间的相互作用,使得离子液体[moemim][PF6]的微观环境比离子液体[bmim][PF6]更为均一,同时具有更小的微粘度.  相似文献   

12.
An ambient temperature liquid transition metal carbonyl anion has been prepared in a metathesis reaction between [bmim]Cl ([bmim]+ = 1-butyl-3-methylimidazolium cation) and Na[Co(CO)4]; the ionic liquid catalyses the debromination of 2-bromoketones.  相似文献   

13.
Photo-induced ATC reactions of RI, CO, and amines to produce amides, were examined using ionic liquids, such as [bmim]PF6 and [bmim]NTf2, as reaction media in the presence of a catalytic amount of a Pd–carbene complex. When the primary alkyl iodide was used, the yield of the amide was lowered due to competing SN2 reactions between RI and amines, whereas the reaction of the tertiary alkyl iodides was dependent on the structure of the substrates. ATC reactions of a wide variety of secondary RI proceeded smoothly when ionic liquids were used as reaction media. The Pd-catalyst and ionic liquid could also be recycled.  相似文献   

14.
Bulk and surface properties of the ionic liquids 1-alkyl-3-methyl-imidazolium iodides ([C(n)mim]I) were simulated by classical molecular dynamics using all atom non-polarizable force field (n = 4, butyl; 6, hexyl; 8, octyl). The structure of ionic liquids were initially optimized by density functional theory and atomic charges obtained by CHELPG method. Reduction of partial atomic charges (by 20% for simulation of density and surface tension, and by 10% for viscosity) found to improve the accuracy, while a non-polarizable force field was applied. Additionally, the simulation ensembles approach the equilibrium faster when the charge reduction is applied. By these refined force field parameters, simulated surface tensions in the range of 323-393 k are quite in agreement with the experiments. Simulation of temperature dependent surface tension of [C(4)mim]I well beyond room temperature (up to 700 K) permits prediction of the critical temperature in agreement with that predicted from experimental surface tension data. Simulated densities in the range of 298-450 K for the three ionic liquids are within 0.8% of the experimental data. Structural properties for [C(4)mim]I were found to be in agreement with the results of Car-Parrinello molecular dynamics simulation we performed, which indicates a rather well-structured cation-anion interaction and occurs essentially through the imidazolium ring cation. Diffusion coefficient changes with alkyl chain length in the order of [C(8)mim]I > [C(6)mim]I > [C(4)mim]I for the cation and the anion. Formation of a dense domain in subsurface region is quite evident, and progressively becomes denser as the alkyl chain length increases. Bivariate orientational analysis was used to determine the average orientation of molecule in ionic liquids surface, subsurface, and bulk regions. Dynamic bisector-wise and side-wise movement of the imodazolium ring cation in the surface region can be deduced from the bivariate maps. Atom-atom density profile and bivariate analysis indicate that the imidazolium cation takes a spoon like configuration in the surface region and the tilt of alkyl group is a function length of alkyl chain exposing as linear as possible to the vapor phase.  相似文献   

15.
We have investigated the effect of deuterated water on the conformational equilibrium between the gauche and trans conformers of the [bmim] cation in mixtures of water and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]), an ionic liquid, at room temperature. A comparison of the results obtained from solutions made with H(2)O and with D(2)O highlights an anomalous conformational change in the D(2)O solution showing an extended N-shaped behavior. The gauche conformer of the [bmim] cation in D(2)O increased up to x = ~50 (D(2)O mol %); however, it decreased up to higher water concentrations of x = ~85 before again increasing drastically toward x = ~100. We provide spectroscopic evidence that the anomalous conformational dynamics of the [bmim] cation in D(2)O is directly related to the H/D exchange reaction of the C-H group at position 2 of the imidazolium ring.  相似文献   

16.
The alkyl chain length of 1-alkyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Rmim][(CF(3)SO(2))(2)N], R = methyl (m), ethyl (e), butyl (b), hexyl (C(6)), and octyl (C(8))) was varied to prepare a series of room-temperature ionic liquids (RTILs), and the thermal behavior, density, viscosity, self-diffusion coefficients of the cation and anion, and ionic conductivity were measured over a wide temperature range. The self-diffusion coefficient, viscosity, ionic conductivity, and molar conductivity change with temperature following the Vogel-Fulcher-Tamman equation, and the density shows a linear decrease. The pulsed-field-gradient spin-echo NMR method reveals a higher self-diffusion coefficient for the cation compared to that for the anion over a wide temperature range, even if the cationic radius is larger than that of the anion. The summation of the cationic and anionic diffusion coefficients for the RTILs follows the order [emim][(CF(3)SO(2))(2)N] > [mmim][(CF(3)SO(2))(2)N] > [bmim][(CF(3)SO(2))(2)N] > [C(6)mim][(CF(3)SO(2))(2)N] > [C(8)mim][(CF(3)SO(2))(2)N], which greatly contrasts to the viscosity data. The ratio of molar conductivity obtained from impedance measurements to that calculated by the ionic diffusivity using the Nernst-Einstein equation quantifies the active ions contributing to ionic conduction in the diffusion components, in other words, ionicity of the ionic liquids. The ratio decreases with increasing number of carbon atoms in the alkyl chain. Finally, a balance between the electrostatic and induction forces has been discussed in terms of the main contribution factor in determining the physicochemical properties.  相似文献   

17.
The rotational correlation time (tau(2R)) is determined for D(2)O (polar) and C(6)D(6) (apolar) in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF(6)]) by measuring (2)H (D) nuclear magnetic resonance spin-lattice relaxation time (T(1)) in the temperature range from -20 to 110 degrees C. The tau(2R) ratio of water to benzene (tau(WB)) was used as a measure of solute-solvent attraction. tau(WB) is 0.73 and 0.52 in [bmim][Cl] and [bmim][PF(6)], respectively, whereas the molecular volume ratio is as small as 0.11. The slowdown of the water dynamics compared to the benzene dynamics in ionic liquids is interpreted by the Coulombic attractive interaction between the polar water molecule and the anion. As for the anion effect, the rotational dynamics of water solvated by Cl(-) is slower than that solvated by PF(6) (-), whereas the rotational dynamics of benzene is similar in the two ionic liquids. This is interpreted as an indication of the stronger solvation by the anion with a larger surface charge density. The slowdown of the water dynamics via Coulombic solvation is actually significant only at water concentrations lower than approximately 9 mol dm(-3) at room temperature, and it is indistinguishable at temperatures above approximately 100 degrees C. The quadrupolar coupling constants determined for D(2)O and C(6)D(6) in the ionic liquids were smaller by a factor of 2-3 than those in the pure liquid state.  相似文献   

18.
Conformational energies for the butyl group of 1-butyl-3-methylimidazolium (bmim) were calculated by high-level ab initio methods. Estimated relative energies for the TT, GT and G'T rotamers of an isolated bmim cation at the CCSD(T)/cc-pVTZ level are 0.0 -0.02 and -0.50 kcal/mol, respectively. The close contact of a Cl anion to theC(2)-H of imidazolium considerably increases the relative stability of the GT rotamer. Estimated relative energies for the three rotamers of the [bmim]Cl complex, in which the Cl anion exists close to the C(2)-H, are 0.0, -1.61 and -0.25 kcal/mol, respectively. The GT rotamer is favored by the strong attractive electrostatic interaction between the bmim cation and Cl anion. The C(2)-H group in the GT rotamer has a larger positive charge compared with those in the TT and G'T rotamers. The contact of a Br anion to the C(2)-H also stabilizes the GT rotamer. The effects of the Cl anion close to the C(4)-Hand C(5)-Hare small. The anion effects suggest that the GT rotamer is the most stable in ionic liquids. The positive charge on imidazolium ring does not largely change the conformational energies. Estimated relative energies for the three rotamers of N-butylimidazole (0.0, -0.29 and -0.75 kcal/mol, respectively) are not largely different from those for isolated bmim. Calculated MP2/cc-pVTZ level torsional potential for the C im-N im-C-C bond has a minimum when the torsional angle is close to 90 degrees. Coplanar conformation is not a stable structure. Calculated torsional barrier height between the two nonplanar minima is less than 1 kcal/mol.  相似文献   

19.
The amino induced elimination of benzisoxazole into the relevant o-cyanophenolate ion (Kemp elimination) has been studied in [bmim][BF 4] solution at 298 K. To have information about the interactions between reactants and ionic liquid, the reaction has been carried out at different temperatures (293-313 K). Several primary, secondary, and tertiary amines have been used to study the effect of amine structure on the reaction rate. The collected data show that the amine structure seems to have a crucial role in determining the reaction rate. Furthermore, as different cation or anion structures of an ionic liquid can significantly affect its properties, the title reaction has been performed in four different ionic liquids ([bmim][PF6], [bmim][NTf 2], [bm 2im][NTf 2], and [bmpyrr][NTf 2]), using pyrrolidine and piperidine as model amines. An H-donor negative solvent (MeOH and [bmim][NTf 2]) effect on reaction rate was detected. Finally, a narrow range of activation parameters was calculated both for the reaction induced by different amines and for pyrrolidine and piperidine, in the presence of different ILs. This fact suggests the occurrence of an "early" transition state.  相似文献   

20.
1-n-Butyl-3-methylimidazolium fluoride ([bmim][F]) proved very efficient fluorinated reagent for nucleophilic substitution over sulfonate esters and alkyl halides. Preparation of the ionic liquid as well as its use as the reagent has been performed to be the more eco-friendly as possible. No organic solvent is needed for the fluoride introduction, reaction times are reduced by using microwave as the heating source, and the ionic liquids carefully recycled. Furthermore, no special care has to be taken as the presence of water in [bmim][F] was not deleterious to the transformation yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号