首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Circular dichroism (CD) is widely used in the structural characterization and secondary structure determination of proteins. The vacuum UV region (below 190 nm), where charge-transfer transitions have an influence on the CD spectra, can be accessed using synchrotron radiation circular dichroism (SRCD) spectroscopy. Recently, charge-transfer transitions in a conformationally diverse set of dipeptides have been characterized ab initio using complete active space self-consistent field calculations, and the relevant charge distributions have been parametrized for use in the matrix method for calculations of protein CD. Here, we present calculations of the vacuum UV CD spectra of 71 proteins, for which experimental SRCD spectra and X-ray crystal structures are available. The theoretical spectra are calculated considering charge-transfer and side chain transitions. This significantly improves the agreement with experiment, raising the Spearman correlation coefficient between the calculated and the experimental intensity at 175 nm from 0.12 to 0.79. The influence of the conformation on charge-transfer transitions is analyzed in detail, showing that the n --> pi* charge-transfer transitions are most important in alpha-helical proteins, whereas in beta strand proteins the pi --> pi* charge-transfer transition along the chain in the amino- to carboxy-end direction is most dominant.  相似文献   

2.
Many molecules (adducts) bound to DNA are postulated to intercalate between successive DNA base pairs. Linear dichroism (LD) has been used to yield information about the angular orientation of the adduct relative to the helix axis, but cannot probe the orientation within the plane perpendicular to this axis. A model is presented in this paper which predicts that the degree of alignment relative to a DNA fixed axis in this plane may be directly probed through the sign of the circular dichroism (CD) induced in an adduct transition of known polarization. Comparison with experimental data suggests that the method can complement LD studies in giving detailed information about the binding geometry.  相似文献   

3.
Structural features (orientation of the carboxyl group, ring puckering), electronic absorption, and circular dichroism spectra of 4-alkyl- and 4-aryl-dihydropyrimidones 1-5 are calculated by semiempirical (AM1, INDO/S), ab initio (HF/6-31G, CIS/6-31G, RPA/6-31G), and density functional theory (B3LYP/6-31G) methods. These calculations allow an assignment of the absolute configuration by comparison of simulated and experimental CD spectra. Although the ab initio methods greatly overestimate electronic transition energies, the general appearance of the experimental CD spectra is quite nicely reproduced by these calculations. Thus, comparison of experimental with calculated CD spectra is a reliable tool for the assignment of the absolute configuration. For 4-methyl derivatives 1, the first enantiopure DHPM examples with no additional aromatic substituent, the stereochemistry at C4 provided by the theoretical results is confirmed by X-ray structure determination of the diastereomeric salt 6. Additional support is the consistent HPLC elution order found for all investigated DHPMs on a cellulose-derived chiral stationary phase.  相似文献   

4.
The interaction of a series of water-soluble mono- and bis-psoralenamines with calf thymus DNA has been studied with flow UV linear dichroism (LD), circular dichroism (CD) and equilibrium techniques. The positive charge of a protonated amino group strongly enhances the DNA affinity compared to that of the parent compound, 8-methoxypsoralen. The orientation of the psoralen when bound to DNA, depends on the position of the amino substituent. With amino substituents in the 5-position (on the'hydrophobic edge'of psoralen) psoralenamines tend to bind with a considerable tilt relative to the average orientation of the DNA base-pairs. The tilt generally increases with an increased psoralen: base-pair ratio, indicating a more random, nonintercalated binding. With the amino substituents in the 8-position the psoralen binds with its plane parallel to that of the DNA bases as expected for intercalation. The DNA CD supports that these psoralenamines induce a considerable perturbation of the DNA structure, and the CD induced in the psoralen chromophore is in qualitative agreement with intercalation. The study also includes a theoretical and an experimental determination of the UV transition moments of the psoralen chromophore.  相似文献   

5.
Multicomponent monooxygenases, which carry out a variety of highly specific hydroxylation reactions, are of great interest as potential biocatalysts in a number of applications. These proteins share many similarities in structure and show a marked increase in O2 reactivity upon addition of an effector component. In this study, circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field (VTVH) MCD have been used to gain spectroscopic insight into the Fe(II)Fe(II) active site in the hydroxylase component of Toluene-4 monoxygenase (T4moH) and the complex of T4moH bound by its effector protein, T4moD. These results have been correlated to spectroscopic data and density functional theory (DFT) calculations on MmoH and its interaction with MmoB. Together, these data provide further insight into the geometric and electronic structure of these biferrous active sites and, in particular, the perturbation associated with component B/D binding. It is found that binding of the effector protein changes the geometry of one iron center and orientation of its redox active orbital to accommodate the binding of O2 in a bridged structure for efficient 2-electron transfer that can form a peroxo intermediate.  相似文献   

6.
The apparent circular dichroism (CD) and the linear dichroism (LD) spectra of the aggregates of achiral zinc(II)-5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (ZnTPyP), formed at the toluene/water interface in a centrifugal liquid membrane (CLM) cell, were investigated by comparison with the microscopic CD and LD spectra of a single interfacial aggregate of ZnTPyP about 100 mum in length, measured by a microscope-spectropolarimeter. The interfacial ZnTPyP aggregate showed two types of flat trapezoidal shapes, one had a seedlike core at an edge (type I) and another a needlelike core at an edge (type II). The microscopic CD and LD spectra were observed by varying the angle between the parallel axis of the trapezoidal aggregate and the perpendicular axis of a polarized light for LD. The plot of the CD intensity against the LD intensity for a single aggregate, observed at a given wavelength, showed a rotated elliptical shape with a long axis through the origin, when the orientation angle was changed. From these results, it was concluded that the apparent CD spectra observed by the CLM-CD method were mainly due to the large linear dichroism of the aggregate. Both type I and type II structures showed two transition dipole moments, parallel and perpendicular to the long axis of the structure, but suggesting a more developed J-aggregate in type II structure. AFM measurements showed that the interfacial ZnTPyP aggregate had a multilayer structure, in which the unit monolayer thickness was 1.58 +/- 0.23 nm. Finally, the orientation angle of the interfacial aggregate in the CLM cell was estimated as 41 degrees -44 degrees to the rotating axis of the cell.  相似文献   

7.
Long molecules such as fibrous proteins are particularly difficult to characterise structurally. We have recently designed a microvolume Couette flow linear dichroism (LD) cell whose sample volume is only 20-40 microL in contrast to previous cells where the volume of sample required has typically been of the order of 1000-2000 microL. This brings the sample requirements of LD to a level where it can be used for biological samples. Since LD is the difference in absorption of light polarised parallel to an orientation direction and perpendicular to that direction, it is the ideal technique for determining relative orientations of subunits of e.g. fibrous proteins, DNA-drug systems, etc. For solution phase samples, Couette flow orientation, whereby the sample is sandwiched between two cylinders, one of which rotates, has proved to be the optimal technique for LD experiments in many laboratories. Our capillary microvolume LD cell has been designed using extruded quartz rods and capillaries and focusing and collecting lenses. We have developed applications with PCR products, fibrous proteins, liposome-bound membrane proteins, as well as DNA-dye systems. Despite this range of applications, to date there is nothing reported in the literature to enable one to validate the performance of Couette flow LD cells. In this paper we establish validation criteria and show that the data from the microvolume cells are reproducible, vary by less than 1% with sample reloading, follow the Beer-Lambert law, and have signals linear in voltage over a wide voltage range. The microvolume cell data are consistent with those from the large-volume cells for DNA samples. Surprisingly, upon extending the wavelength range by adding the intercalator ethidium bromide, the spectra in the microvolume and large-volume cells differ by a wavelength dependent orientation parameter. This wavelength variation was concluded to be the result of Taylor-vortices in the large-volume cells which have inner rotating cylinders in our laboratory. Thus the microvolume LD cells can be concluded to provide better data than our large-volume LD cells, though the latter are still to be preferred for titration series as it is extremely difficult to add sample to the capillary cells without introducing artefacts.  相似文献   

8.
Chiral bis-porphyrins are currently the subject of intense interest as chiral receptors and as probes in the determination of structure and stereochemistry. To provide an improved framework for interpreting the circular dichroism (CD) spectra of bis-porphyrins, we have calculated the CD spectra of chiral bis-porphyrins from three classes: I, where porphyrins can adopt a relatively wide range of orientations relative to each other; II, porphyrins have a fixed relative orientation; III, porphyrins undergo pi-stacking. The calculations primarily utilized the classical polarizability theory of DeVoe, but were supplemented by the quantum mechanical matrix method. Class I was represented by three isomers of the diester of 5alpha-cholestane-3,17-diol with 5-(4'-carboxyphenyl)-10,15,20-triphenylporphin (2-alphabeta, 2-betaalpha, 2-betabeta). Careful analysis of the torsional degrees of freedom led to two to four minimum-energy conformers for each isomer, in each of which the phenyl-porphyrin bonds had torsional angles near 90 degrees. Libration about these bonds is relatively unrestricted over a range of +/-45 degrees. CD spectra in the Soret region were calculated as Boltzmann-weighted averages over the low-energy conformers for each isomer. Three models were used: the effective transition moment model, in which only one of the degenerate Soret components is considered, along the 5-15 direction; the circular oscillator model, in which both Soret components are given equal weight; and the hybrid model, in which the 10-20 oscillator is given half the weight of the 5-15 oscillator, to mimic the effect of extensive librational averaging about the 5-15 direction. All three models predict Soret exciton couplets with signs in agreement with experiment. Quantitatively, the best results are given by the hybrid and circular oscillator models. These results validate the widely used effective transition moment model for qualitative assignments of bis-porphyrin chirality and thus permit application of the exciton chirality model. However, for quantitative studies, the circular oscillator or hybrid models should be used. The simplified effective transition moment and hybrid models are justified by the librational averaging in the class I bis-porphyrins and should only be used with such systems. Two class II bis-porphyrins were also studied by DeVoe method calculations in the circular oscillator model, which yielded good agreement with experiment. Class III bis-porphyrins were represented by 2-alphaalpha, for which the calculations gave qualitative agreement. However, limitations in the conformational analysis with the close contacts and dynamic effects in these pi-stacked systems preclude quantitative results.  相似文献   

9.
The performance of time-dependent density functional theory (TDDFT) for calculations of long-range exciton circular dichroism (CD) is investigated. Tetraphenylporphyrin (TPP) is used as a representative of a class of strongly absorbing chromophores for which exciton CD with chromophore separations of 50 Å and even beyond has been observed experimentally. A dimer model for TPP is set up to reproduce long-range exciton CD previously observed for a brevetoxin derivative. The calculated CD intensity is consistent with TPP separations of over 40 Å. It is found that a hybrid functional with fully long-range corrected range-separated exchange performs best for full TDDFT calculations of the dimer. The range-separation parameter is optimally tuned for TPP, resulting in a good quality TPP absorption spectrum and small DFT delocalization error (measured by the curvature of the energy calculated as a function of fractional electron numbers). Calculated TDDFT data for the absorption spectra of TPP are also used as input for a ‘matrix method’ (MM) model of the exciton CD. For long-range exciton CD, comparison of MM spectra with full TDDFT CD spectra for the dimer shows that the matrix method is capable of producing very accurate results. A MM spectrum obtained from TPP absorption data calculated with the nonhybrid Becke88–Perdew86 (BP) functional is shown to match the experimental brevetoxin spectrum ‘best’, but for the wrong reasons.  相似文献   

10.
Circular dichroism (CD), and NMR spectra have been recorded and molecular dynamics (MD) simulations have been performed in water and water-trifluoroethanol (TFE) mixed solvent for a synthetic biologically active 13-amino-acid fragment of human fibronectin and two related peptides. The CD results are interpreted on the basis of statistical analyses of MD trajectories and of ensuing calculations of CD spectra based on Schellman's matrix method. It is observed that the peptide conformation is quite variable in water and loses its mobility with the addition of TFE. (1)H-NOE data were found to be consistent with the most abundant calculated conformation.  相似文献   

11.
A theory of the electronic circular dichroism (CD) and optical rotatory dispersion (ORD) of infinite aggregates exhibiting cylindrical symmetry is presented in which, to the authors' knowledge, for the first time vibrational structure is included explicitly. It is shown that, with the coherent exciton scattering approximation in the Green function approach, the detailed vibrational structure of the aggregate absorption. CD and ORD bands can be calculated from a knowledge of the electronic coupling and the monomer absorption line shape alone. Detailed model calculations for a single helix are made and the results are used to expose the origin of different spectral features. A good reproduction of experimental J-aggregate spectra is obtained, using the same electronic interaction to fit both absorption and CD spectral line shapes. The theory allows some prediction of aggregate geometry to be made, but it is shown that an unambiguous geometrical assignment can only be made where experimental spectra for light of different propagation directions with respect to the cylinder axis are available.  相似文献   

12.
Residual dipolar couplings (RDCs), in combination with molecular order matrix calculations, were used to unambiguously determine the complete relative stereochemistry of an organic compound with five stereocenters. Three simple one-dimensional experiments were utilized for the measurements of (13)C-(1)H, (13)C-(19)F, (19)F-(1)H, and (1)H-(1)H RDCs. The order matrix calculation was performed on each chiral isomer independently. The fits were evaluated by the comparison of the root-mean-square deviation (rmsd) of calculated and measured RDCs. The order tensor simulations based on two different sets of RDC data collected with phage and bicelles are consistent. The resulting stereochemical assignments of the stereocenters obtained from using only RDCs are in perfect agreement with those obtained from the single-crystal X-ray structure. Six RDCs are found to be necessary to run the simulation, and seven are the minimum to get an acceptable result for the investigated compound. It was also shown that (13)C-(1)H and (1)H-(1)H RDCs, which are the easiest to measure, are also the most important and information-rich data for the order matrix calculation. The effect of each RDC on the calculation depends on the location of the corresponding vector in the structure. The direct RDC of a stereocenter is important to the configuration determination, but the configuration of stereocenters devoid of protons can also be obtained from analysis of nearby RDCs.  相似文献   

13.
以INDO/S-CI法对青蒿素分子进行了量子化学研究。结合实验结果讨论了其紫外光谱和圆二色谱。  相似文献   

14.
The vibrational structure of the title compound (DBM) was investigated by FTIR spectroscopy in liquid solutions, by FTIR linear dichroism (LD) measurements, and by Raman spectroscopy. The results were supported by the application of theoretical model calculations and analyzed with particular attention to the possible origin of the broad, very strong, and irregularly shaped absorbance band observed in the 1700–1400 cm−1 region. The orientation factors derived from the observed LD data indicate that rotational dynamics of the phenyl groups do not contribute significantly to the broadening of the band. The position of the two sharp Evans transmission windows near 1580 and 1500 cm−1 is unaffected by deuteration of the reactive protons in DBM. The transmissions coincide with prominent peaks in the Raman spectrum and can be assigned to combinations of phenylic modes (9a, 18a) with low IR intensity, but large Raman scattering activity.  相似文献   

15.
Knowledge of the orientation of the nitrogen-15 chemical shift anisotropy (CSA) tensor is critical for a variety of experiments that provide information on protein structure and dynamics in the solid and solution states. Unfortunately, the methods available for determining the orientation of the CSA tensor experimentally have inherent limitations. Rotation studies of a single crystal provide complete information but are tedious and limited in applicability. Solid-state NMR studies on powder samples can be applied to a greater range of samples but suffer from ambiguities in the results obtained. Density functional gauge-including-atomic-orbitals (GIAO) calculations of the orientations of (15)N CSA tensors in peptides are presented here as an independent source of confirmation for these studies. A comparison of the calculated (15)N CSA orientations with the available experimental values from single-crystal and powder studies shows excellent agreement after a partial, constrained optimization of some of the crystal structures used in the calculation. The results from this study suggest that the orientation as well as the magnitudes of (15)N CSA tensors may vary from molecule to molecule. The calculated alpha(N) angle varies from 0 degrees to 24 degrees with the majority in the 10 degrees to 20 degrees range and the beta(N) angle varies from 17 degrees to 24 degrees in good agreement with most of the solid-state NMR experimental results. Hydrogen bonding is shown to have negligible effect on the orientation of (15)N CSA tensor in accordance with recent theoretical predictions. Furthermore, it is demonstrated that the orientation of the (15)N CSA can be calculated accurately with much smaller basis sets than is needed to calculate the chemical shift, suggesting that the routine application of ab initio calculations to the determination of (15)N CSA tensor orientations in large biomolecules might be possible.  相似文献   

16.
Understanding conformation transitions of proteins in the presence of a chemical denaturant is a topic of great interest because the rich information contained in chemical unfolding is of fundamental importance for proteomic and pharmaceutical research. In this work, the conformational structure changes of glucose oxidase (GOx) induced by guanidinium ions (Gdm(+)) were studied in detail by a combination of electrochemical methods, various spectroscopic techniques including ultraviolet-visible (UV-vis) absorption, fluorescence, Fourier transform infrared (FTIR), and circular dichroism (CD) spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations with the purpose of revealing the mechanism of chemical unfolding of proteins. The results indicated that GOx underwent substantial conformational changes both at the secondary and tertiary structure levels after interacting with Gdm(+) ions. The interaction of GOx with the chemical denaturant resulted in a disturbance of the structure of the flavin prosthetic group (FAD moiety) that induced the moiety to become less exposed to solvent than that in the native protein molecule. The calculation from quantitative second-derivative infrared and CD spectra showed that Gdm(+) ions induced the conversion of α-helix to β-sheet structures. MD simulations and DFT calculations revealed that Gdm(+) ions could enter the active pocket of the GOx molecule and interact with the FAD group, leading to a significant alteration in the structural characteristics and hydrogen bond networks formed between FAD and the surrounding amino acid residues. These alterations in the conformational structure of GOx resulted in a significant decrease in the catalytic activity of the enzyme to glucose oxidation. The study essentially provides an effective way for investigating the mechanism of chemical denaturant-induced protein unfolding, and this approach can be used for assessing the effect of drug molecules on proteins.  相似文献   

17.
Knowing the structure of a molecule is one of the keys to deducing its function in a biological system. However, many biomacromolecules are not amenable to structural characterisation by the powerful techniques often used namely NMR and X-ray diffraction because they are too large, or too flexible or simply refuse to crystallize. Long molecules such as DNA and fibrous proteins are two such classes of molecule. In this article the extent to which flow linear dichroism (LD) can be used to characterise the structure and function of such molecules is reviewed. Consideration is given to the issues of fluid dynamics and light scattering by such large molecules. A range of applications of LD are reviewed including (i) fibrous proteins with particular attention being given to actin; (ii) a far from comprehensive discussion of the use of LD for DNA and DNA-ligand systems; (iii) LD for the kinetics of restriction digestion of circular supercoiled DNA; and (iv) carbon nanotubes to illustrate that LD can be used on any long molecules with accessible absorption transitions.  相似文献   

18.
Charge-transfer transitions in proteins play a key role in many biophysical processes, from the behavior of redox proteins to photochemical reactions. We present ab initio calculations on a model dipeptide and more approximate calculations of the electronic excited states of proteins which, taken together, provide the most definitive assignment and characterization of charge-transfer transitions in proteins to date. We have calculated from first principles the electronic circular dichroism (CD) spectra of 31 proteins on the basis of their structures. Compared to previous studies, we achieve more accurate calculated CD spectra between 170 and 190 nm, owing mainly to the importance in alpha-helices of a charge-transfer transition from the lone pair on one peptide group to the pi* orbital on the next peptide group.  相似文献   

19.
A high-sensitivity linear dichroism (LD) technique has been employed in studying the indirect orientation of benzene by solubilization in rod-shaped micelles in a system of cetyltrimethylammoniumbromide (CTAB): water, oriented by flow in a couvette device. The dependence of the LD signal due to the π-π* transitions in the benzene plane on the temperature, on the shear gradient and on the benzene concentration, has been investigated. The net positive LD, observed from the benzene chromophore, derives from benzene orientation at the surface of the rod-shaped micelles. The orientation of the micelle rods is very high and the system is suggested for use as a standard matrix for studying solubilized molecules in polarized spectroscopy.  相似文献   

20.
There is a great need for development of independent methods to study the structure and function of membrane-associated proteins and peptides. Polarized light spectroscopy (linear dichroism, LD) using shear-aligned lipid vesicles as model membranes has emerged as a promising tool for the characterization of the binding geometry of membrane-bound biomolecules. Here we explore the potential of retinoic acid, retinol, and retinal to function as probes of the macroscopic alignment of shear-deformed 100 nm liposomes. The retinoids display negative LD, proving their preferred alignment perpendicular to the membrane surface. The magnitude of the LD indicates the order retinoic acid > retinol > retinal regarding the degree of orientation in all tested lipid vesicle types. It is concluded that mainly nonspecific electrostatic interactions govern the apparent orientation of the retinoids within the bilayer. We propose a simple model for how the effective orientation may be related to the polarity of the end groups of the retinoid probes, their insertion depths, and their angular distribution of configurations around the membrane normal. Further, we provide evidence that the retinoids can sense subtle structural differences due to variations in membrane composition and we explore the pH sensitivity of retinoic acid, which manifests in variations in absorption maximum wavelength in membranes of varying surface charge. Based on LD measurements on cholesterol-containing liposomes, the influence of membrane constituents on bending rigidity and vesicle deformation is considered in relation to the macroscopic alignment, as well as to lipid chain order on the microscopic scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号