首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
光诱导功能退化是胶体量子点在应用中面临的主要挑战之一,本文针对这一问题研究了使用磁控溅射沉积SiO2薄膜形成钝化层来提高CdSe/ZnS量子点发光稳定性的方法。首先,通过三正辛基膦辅助连续离子层吸附反应方法合成了615 nm发光的红色CdSe/ZnS量子点。然后将量子点旋涂在SiO2/Si基片上,再通过磁控溅射方法在量子点上沉积了厚度为20 nm的SiO2薄膜作为钝化层。使用连续波激光光源分别在空气气氛和真空条件下照射样品,研究了经过不同照射时间后钝化和未钝化量子点的稳态光致发光光谱。结果表明,随着照射时间的延长,没有SiO2钝化的量子点的PL强度显著降低、PL峰值发生蓝移、FWHM不断增大。对比研究发现,由于SiO2薄膜能够阻挡空气中的水和氧,减缓了量子点表面的光诱导氧化现象,因此显著提高了CdSe/ZnS量子点的稳定性。  相似文献   

2.
硒化镉发光量子点的制备及其在有机发光器件中的应用   总被引:4,自引:4,他引:0  
硒化镉量子点具有随粒径尺寸改变,而产生发光波长调变的特性,目前已被广泛研究。本研究是由化学溶胶法合成不同粒径尺寸的核壳型CdSe/ZnS硒化镉量子点,其表面包覆十六烷基胺,避免分子团聚现象。在由硒化镉成核温度的控制,成功地制备一系列具有各种尺寸粒径的核壳型硒化镉量子点(2—6nm)。本研究也合成了含有纳米金粒子于核壳型硒化镉量子点,实验结果发现:硒化镉发光效率明显的提高。在有机发光器件的应用方面,将发光波长为505nm核壳型CdSe/ZnS量子点掺入溶有发光波长为570nm铱化合物的氯仿溶液时,其溶液的光致发光光谱表明,原量子点的发光特性消失,只有铱化合物的发光依然存在,且其发光强度呈现明显增强趋势,我们推测此现象源自于量子点到铱化合物能量转移的机制。我们也以含有核壳型硒化镉量子点的铱化合物与PVK混合材料为发光层,成功的制作发光二极管器件,器件的发光效率因核壳型硒化镉的掺杂,明显提高2倍多。  相似文献   

3.
半导体量子点(QDs)具有发光效率高和发光波长可调等特点。采用胶体CdSe QDs作电致发光器件的有源材料,TPD(N,N′-biphenyl-N,N′-bis-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine)作空穴传输层,ZnS作电子传输层,研究了有机/无机复合发光器件ITO/TPD/CdSe QDs/ZnS/Ag的电致发光特性。TPD和CdSe QDs薄膜采用旋涂方法、ZnS薄膜采用磁控溅射方法沉积,器件表面平整。CdSe QDs的光致发光和电致发光谱峰位波长均位于~580 nm,属于量子点的带边激子发光。我们与以前的ITO/ZnS/CdSe QDs/ZnS/Ag发光器件结构进行了对比,发现新的器件结构的电致发光谱没有观察到QDs表面态的发光,而且新器件的发光强度是ITO/ZnS/CdSe QDs/ZnS/Ag结构的~10倍。发光效率的提高归因于碰撞激发与载流子注入两种发光机制并存的结果:一方面电子经过ZnS 层加速后,碰撞激发CdSe QDs发光;另一方面,空穴从TPD层注入CdSe QDs 与QDs中激发的电子复合发光。我们进一步研究了ZnS电子加速层厚度对发光特性的影响,选择ZnS薄膜的厚度分别是80,120 和160 nm,发现随着ZnS层厚度增大,器件启亮电压升高,EL强度增大,但是击穿电压降低。EL峰位随着ZnS厚度的减小发生明显蓝移,对上述实验现象进行了机理解释。  相似文献   

4.
闫海珍  程成  张庆豪 《发光学报》2008,29(1):166-170
测量了分散于正己烷溶液和甲苯溶液中的CdSe/ZnS量子点在室温到近溶液沸点温度间的吸收与光致发光光谱,比较了两种不同的CdSe/ZnS量子点的光谱特性,讨论了温度对吸收和光致发光光谱峰值波长以及相对强度的影响。结果表明:在25~100℃范围内,CdSe/ZnS量子点激子吸收峰波长有微小红移,最大约为4nm;光致发光光谱峰值波长略有红移,但最大不超过6nm。根据光致发光光谱测量的结果,确定了Varshni定律中关于CdSe/ZnS量子点禁带宽度的两个经验参数:α=(2.0±0.2)×10-4eV/K和β=(200±30)K。温度对CdSe/ZnS量子点吸收强度影响不大,荧光发射强度与温度呈线性关系增强。  相似文献   

5.
A kind of novel thermal history nanosensors are theoretically designed and experimentally demonstrated to permanently record thermal events. The photoluminescence (PL) spectrum of core‐shelled quantum dots (QDs) CdSe/ZnS irreversibly shifts with heating histories (temperature and duration) of thermal events. The induced PL shift of the QDs CdSe/ZnS is employed to permanently record thermal histories. We further model a kind of thermal history nanosensor based on the thermal‐induced phenomena of core‐shelled QDs to permanently record thermal histories at microscale and demonstrate to reconstruct temperature and duration of heating events simultaneously from PL spectra of the QDs. The physical mechanism of the sensors is discussed.  相似文献   

6.
The paper presents the original study of photoluminescence (PL) and Raman scattering spectra of core–shell CdSe/ZnS quantum dots (QDs) covered by the amine-derivatized polyethylene glycol (PEG) with luminescence interface states. First commercially available CdSe/ZnS QDs with emission at 640 nm (1.94 eV) covered by PEG polymer have been studied in nonconjugated states. PL spectra of nonconjugated QDs are characterized by a superposition of PL bands related to exciton emission in a CdSe core and to the hot electron–hole recombination via high energy luminescence states. The study of high energy PL bands in QDs at different temperatures has shown that these PL bands are related to luminescence interface states at the CdSe/ZnS or ZnS/polymer interface. Then CdSe/ZnS QDs have been conjugated with biomolecules—the Osteopontin antibodies. It is revealed that the PL spectrum of bioconjugated QDs changed essentially with decreasing hot electron–hole recombination flow via luminescence interface states. It is shown that the QD bioconjugation process to Osteopontin antibodies is complex and includes the covalent and electrostatic interactions between them. The variation of PL spectra due to the bioconjugation is explained on the basis of electrostatic interaction between the QDs and biomolecule dipoles that stimulates re-charging QD interface states. The study of Raman scattering of bioconjugated CdSe/ZnS QDs has confirmed that the antibody molecules have the electric dipoles. It is shown that CdSe/ZnS QDs with luminescence interface states are promising for the study of bioconjugation effects with specific antibodies and can be a powerful technique in biology and medicine.  相似文献   

7.
Efficient photoluminescence (PL) up-conversion in CdSe/ZnS quantum dots prepared by an organometallic approach is reported. It is demonstrated that the efficiency of photon energy up-conversion and the magnitude of the spectral shift can be controlled by (i) the thickness of the ZnS layers, (ii) the temperature dependence of the excited-state absorption coefficient, and (iii) the dependence on the excitation intensity. From the analysis of the experimental data, it is proposed that intrinsic gap states are involved as intermediate states in the PL up-conversion, rather than nonlinear two-photon absorption or Auger processes.  相似文献   

8.
MPA stabilized CdSe/ZnS NCs was applied as a fluorescent probe for the sensitive detection of Pb2+ in water. The microreaction was demonstrated as a facile method for the reproducible synthesis of CdSe/ZnS NCs with a high quantum yield. The good stability of CdSe/ZnS NCs was proved by the significant maintaining of photoluminescent (PL) after the ligand exchange with MPA, and was further demonstrated by the excellent PL property in water solution with various pH values. The cation exchange of Zn with Pb led to the linear quenching of PL with the concentration of Pb2+, which provided as an opportunity to apply MPA stabilized CdSe/ZnS NCs as fluorescent probes for Pb2+. A facile method by adjustment of QDs concentration was demonstrated as a suitable way to approach different detection limits. The detection limits of 0.03 and 3.3 μM were achieved by setting QDs solutions with the absorbance of the first exciton peak as 0.05 and 0.15, respectively.  相似文献   

9.
Hybrid nanostructures of quantum dots(QDs) and metallic nanostructure are attractive for future use in a variety of optoelectronic devices. For photodetection applications, it is important that the photoluminescence (PL) of QDs is quenched by the metallic nanostructures. Here, the quenching efficiency of CdSe/ZnS core-shell quantum dots (QDs) with different sized gold nanoparticles (NPs) films through energy transfer is investigated by measuring the PL intensity of the hybrid nanostructures. In our research, the gold NPs films are formed by the post-annealing of the deposited Au films on the quartz substrate. We find that the energy transfer from the QDs to the Au NPs strongly depends on the sizes of the Au NPs. For CdSe/ZnS QDs direct contact with the Au NPs films, the largest energy transfer efficiency are detected when the resonance absorption peak of the Au NPs is nearest to the emission peak of the CdSe/ZnS QDs. However, when there is a PMMA spacer between the QDs layer and the Au NPs films, firstly, we find that the energy transfer efficiency is weakened, and the largest energy transfer efficiency is obtained when the resonant absorption peak of the Au NPs is farthest to the emission peak wavelength of CdSe/ZnS QDs. These results will be useful for the potential design of the high efficiency QDs optoelectronic devices.  相似文献   

10.
单核/双壳结构CdSe/CdS/ZnS纳米晶的合成与发光性质   总被引:5,自引:4,他引:1       下载免费PDF全文
以巯基乙酸为稳定剂,在水溶液中合成了单核/双壳结构的CdSe/CdS/ZnS纳米晶。在内核CdSe和外壳ZnS之间的内壳CdS作为晶格匹配调节层,能够很好的改善核/壳界面处的性能,而且,最外层ZnS能够最大程度地使激子受限。用TEM和XPS对纳米晶进行了表征,并且用光致发光光谱和吸收光谱对不同核壳结构的纳米晶的发光性能进行了比较,结果表明单核/双壳结构的纳米晶具有更加优异的发光特性。  相似文献   

11.
Highly orientated polycrystalline ZnO films were deposited on sapphire, silicon and quartz substrates at room temperature by r.f. magnetron sputtering. Different photoluminescence (PL) spectra were observed when excited with different wavelength light. A UV emission peak (356 nm) and a blue peak (446 nm) were generated for the films on sapphire, silicon and quartz substrates, and only the 446 nm blue emission appeared for the films on glass substrates when the wavelength of the excitation light was 270 nm. With increasing the wavelength of the excitation light up to 300 and 320 nm, the UV emission disappeared for films on various substrates and the wavelength of the PL peaks increased up to 488 and 516 nm, respectively. When the wavelength of the excitation light increased to 398 nm, the PL spectrum becomes a wide band that is consistent with three emission peaks.  相似文献   

12.
In this work, Si nanocrystals (Si-NCs) have been prepared by pulsed laser ablation technique in dichloromethane, and the microstructure and photoluminescence (PL) properties of the Si-NCs before and after natural oxidation were investigated. Transmission electron microscopy and Raman results show that the average diameter of the Si-NCs is 2.42 nm in the dichloromethane solution. Blue–violet PL with a lifetime of 4.6 ns is observed at room temperature, and the PL peak shifts toward longer wavelength with the red shift of excitation wavelength. The PL excitation spectrum indicates that the bandgap of the Si-NCs in solution is 2.64 eV, which confirms that the blue–violet PL originates from interband transition of Si-NCs caused by quantum confinement effect. The PL peak red shifts to 607 nm after natural oxidation, and the peak lifetime of which is slow down to 13.1 μs. The fixed PL peak excited by different wavelengths and the slow PL decay time indicate that interface defects become the main PL mechanism after natural oxidation. The results will add new information for understanding the PL mechanism of Si-NCs in different environments.  相似文献   

13.
We discuss the fluorescence spectra from a set of points in histological sections of colon tissue with different levels of pathology that were stained with hydrophilic semiconductor CdSe/ZnS nanoparticles that were modified by a unique method at the phase interface. The shifts in the fluorescence spectra that were recorded for stained cells at different pathologies are described using the electrochromism of the nanoparticles. Aqueous solutions of the CdSe/ZnS nanoparticles with different pH values are used as systems that model the acidity of a biological medium. It has been shown that the shifts of the fluorescence bands of the CdSe/ZnS nanoparticles are caused by a change in the local electrical field that is induced by solvated ions near their surface at different pH values of the solutions. The application of the CdSe/ZnS nanoparticles as nanoprobes for the local pH in biological tissue is discussed in the context of this model.  相似文献   

14.
The change in the intensity of the photoluminescence (PL) spectra of nematic liquid crystal (NLC) composites as a function of the concentration of CdSe/ZnS semiconductor quantum dots (QDs) and TiO2 and ZrO2 nanoparticles ~5 nm in diameter has been investigated. It is shown that the PL-quenching intensity in composites with CdSe/ZnS QDs exceeds that in composites with TiO2 and ZrO2 nanoparticles. The lowfrequency spectra of these composites with a concentration of 0.1 wt %, recorded in the range of 102–103 Hz, and the content of mobile ions in them have been investigated. It is found that the dielectric loss in the composite with CdSe/ZnS QDs is much higher and the content of mobile ions is larger by a factor of 3 than in the composites with TiO2 and ZrO2 nanoparticles. It is shown that an increase in the CdSe/ZnS QD concentration in NLC composites leads to an increase in the dielectric loss and a decrease in the PL intensity. Possible mechanisms of the interaction between NLC molecules and CdSe/ZnS QDs are discussed.  相似文献   

15.
Time Resolved Photoluminescence (TRPL) measurements on the picosecond time scale (temporal resolution of 17 ps) on colloidal CdSe and CdSe/ZnS Quantum Dots (QDs) were performed, to elucidate the role of intrinsic and surface states on the emission process. Transient PL spectra reveal three emission peaks with different lifetimes (60 ps, 460 ps and 9–10 ns, from the bluest to the reddest peak). The energy separations among the states, together with their characteristic decay times, allow us to attribute the two higher energy peaks to ±1U and ±1L bright states of the fine structure picture of spherical CdSe QDs, and the third one to surface states emission, respectively. We show that the contribution of surface emission to the PL results to be different for the two samples studied (67% in the CdSe QDs and 32% in CdSe/ZnS QDs), confirming the decisive role of the ZnS shell in the improvement of the surface passivation.  相似文献   

16.
邵太丽  李萍  赵志刚  宋雪飞  朱昌青 《发光学报》2012,33(11):1187-1191
在油相中成功合成了脂溶性CdSe/ZnS核壳量子点纳米粒,粒径平均为4.5 nm,量子产率达29%,发射波长为540 nm。通过薄膜分散法,以蛋黄卵磷脂、胆固醇为膜材,将脂溶性的CdSe/ZnS核壳量子点包覆于脂质体磷脂双分子层中,由于磷脂分子的两亲性,使得脂溶性的CdSe/ZnS核壳量子点同时又具有亲水性。通过透射电镜对脂质体形态进行了表征,倒置荧光显微镜证实了发光CdSe/ZnS核壳量子点成功包埋于脂质体双分子层中,包裹的发光CdSe/ZnS核壳量子点具有更稳定的发光及抗光漂白性质。  相似文献   

17.
The method of molecular layering is used to prepare CdS thin films and CdS/ZnS and CdS/CdSe superlattices. The dependence of the exciton photoluminescence on film thickness is studied, and the role of internal strains is examined. The effect of the excitation intensity on the superlattice photoluminescence spectra is examined, manifested in a shift of the emission maximum toward shorter wavelengths when this intensity is increased. Fiz. Tverd. Tela (St. Petersburg) 40, 820–821 (May 1998)  相似文献   

18.
The objective of this work is to investigate structural, morphological and optical properties of conventional CdSe/ZnS core–shell and inverted ZnS/CdSe core–shell nanostructures for opto-electronic device applications. For this purpose both nanostructures were synthesized using chemical bath deposition technique in thin film form. The structural properties were studied using X-ray diffraction technique with Rietveld refinement and transmission electron microscopy (TEM). The surface morphology of synthesized thin film was illustrated in the form 2D and 3D images using atomic force microscopy (AFM). The optical properties were explained using UV–Vis absorption spectroscopy and photo luminescence (PL) spectroscopy in in situ monitoring process. A comparison of estimated particle size from XRD, high resolution AFM and TEM images was resulted in good agreement as 2.1, 2.4 and 2.1 nm respectively for conventional CdSe/ZnS core–shell and as 2.5, 2.5 and 2.2 nm respectively for inverted ZnS/CdSe core–shell nanostructures.  相似文献   

19.
To investigate the influence of surface trapping and dark states on CdSe and CdSe/ZnS quantum dots (QDs), we studied the absorption, fluorescence intensity and lifetime by using one-and two-photon excitation, respectively. Experimental results show that both one- and two-photon fluorescence emission efficiencies of the QDs enhance greatly and the lifetime increase after capping CdSe with ZnS due to the effective surface passivation. The lifetime of one-photon fluorescence of CdSe and CdSe/ZnS QDs increase with increasing emission wavelength in a supralinear way, which is attributed to the energy transfer of dark excitons. On the contrary, the lifetime of two-photon fluorescence of bare and core-shell QDs decrease with increasing emission wavelength, and this indicates that the surface trapping is the dominant decay mechanism in this case.  相似文献   

20.
We investigated the influence of an epitaxially grown ZnS shell on the phonon spectra of CdSe nanorods of different sizes. The CdSe related Raman peaks shift with addition of a ZnS shell. The longitudinal optical phonon shifts slightly due to strain and the low‐energy shoulder shifts stronger, which can be explained within a model for surface optical phonons. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号