首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Single crystals of Ba3[UO2(C2O4)2(NCS)]2 · 9H2O are synthesized and studied by X-ray diffraction. The crystals are orthorhombic, space group Fddd, Z = 16, and the unit cell parameters are a = 16.253(3) Å, b = 22.245(3) Å, c = 39.031(6) Å. The main crystal structural units are mononuclear complex groups [UO2(C2O4)2NCS]3? of the crystal-chemical family (AB 2 01 M1 (A = UO 2 2+ , B01 = C2O 4 2? , M1 = NCS?) of the uranyl complexes linked into a three-dimensional framework by electrostatic interactions and hydrogen bonds involving oxalate ions and water molecules.  相似文献   

2.
Single crystals of Cs[(UO2)2(C2O4)2(OH)] · H2O were synthesized and structurally studied using X-ray diffraction. The compound crystallizes in monoclinic space group P21/m, Z = 2, with the unit cell parameters a = 5.5032(4) Å, b = 13.5577(8) Å, c = 9.5859(8) Å, β = 97.012(3)°, V = 709.86(9) Å3, R = 0.0444. The main building units of crystals are [(UO2)2(C2O4)2(OH)]? layers of the A2K 2 02 M2 (A = UO 2 2+ , K02 = C2O 4 2? , and M2 = OH?) crystal-chemical family. Uranium-containing layers are linked into a three-dimensional framework via electrostatic interactions with outer-sphere cations and hydrogen bonds with water molecules.  相似文献   

3.
The single crystals of Rb2[(UO2)2(C2O4)2(SeO4)] · 1.33H2O were synthesized and studied by X-ray diffraction. The crystals are monoclinic, space group P21/m, Z= 2, the unit cell parameters: a = 5.6537(8), b = 18.736(3), c = 9.4535(15) Å, β = 98.440(5)°, V = 990.6(3) Å3, R 1 = 0.0506. The main structural units of the crystal are infinite layers of [(UO2)2(C2O4)2(SeO4)]2?, corresponding to the crystal chemical group A2K 2 02 B2 (A = UO 2 2+ , K02 = C2O 4 2? , B2 = SeO 4 2? ) of uranyl complexes. The uranium-containing layers are united into a three-dimensional framework through the electrostatic interactions with the outer-sphere rubidium ions and the hydrogen bonding system involving the outer-sphere water molecules.  相似文献   

4.
A powder of deuterated rubidium diselenatouranylate dihydrate Rb2UO2(SeO4)2 · 2D2O has been studied by neutron diffraction. The compound is orthorhombic, space group Pna21, with the following unit cell parameters: a = 13.654(2) Å, b = 11.863(2) Å, c = 7.625(1) Å, Z = 4, R F = 3.77, R I = 6.12, and χ2 = 2.21. Basic structure units are [UO2(SeO4)2 · D2O]2? layers belonging to the AB 2 2 M1 crystal-chemical group (A = UO 2 2+ , B2 = SeO 4 2? , M1 = D2O) of uranyl complexes. The hydrogen atoms if the water molecules involved in the layer form intralayer hydrogen bonds with the terminal oxygen atoms of selenate ions. The outer-sphere water molecules are coordinated to the rubidium ions and are involved in hydrogen bonding with oxygen atoms of neighboring [UO2(SeO4)2 · D2O]2? layers.  相似文献   

5.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. The anhydrous oxalate mineral moolooite CuC2O4 as the natural copper(II) oxalate mineral is a classic example. Another example of a natural oxalate is the mineral wheatleyite Na2Cu2+(C2O4)2·2H2O. High resolution thermogravimetry coupled to evolved gas mass spectrometry shows decomposition of wheatleyite at 255°C. Two higher temperature mass losses are observed at 324 and 349°C. Higher temperature mass losses are observed at 819, 833 and 857°C. These mass losses as confirmed by mass spectrometry are attributed to the decomposition of tennerite CuO. In comparison the thermal decomposition of moolooite takes place at 260°C. Evolved gas mass spectrometry for moolooite shows the gas lost at this temperature is carbon dioxide. No water evolution was observed, thus indicating the moolooite is the anhydrous copper(II) oxalate as compared to the synthetic compound which is the dihydrate.  相似文献   

6.
Single crystals of the Na4[Na2Cr2(C2O4)6] · 10H2O complex were synthesized for the first time. The structure of the complex was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic crystal system with the unit cell parameters a = 17.290(4) Å, b = 12.521(3) Å, c = 15.149(3) Å, β = 100.45(3)°, Z = 4, space group Cc. Anionic layers [NaCr(C2O4)3] 2n 4n? can be distinguished in the crystal structure of the complex. The Na+ cations and water molecules, involved in the formation of a hydrogen bond network, are located between the anionic layers.  相似文献   

7.
The crystal structure of a double complex salt of the composition [Au(en)2]2[Cu(C2O4)2]3·8H2O (en = ethylenediamine) at 150 K is determined by single crystal X-ray diffraction. The crystal data for C20H48Au2Cu3N8O32 are: a = 9.1761(3) Å, b = 16.9749(6) Å, c = 13.4475(5) Å, β = 104.333(1)°, V = 2029.43(12) Å3, P21/c space group, Z = 2, d x = 2.450 g/cm3. It is demonstrated that the thermal decomposition of the double complex salt in a helium or hydrogen atmosphere affords the solid solution Au0.4Cu0.6.  相似文献   

8.
Phase equilibria in the reciprocal system 3Tl2S + Sb2Se3 ? 3Tl2Se + Sb2S3 are investigated by DTA, X-ray powder diffraction, and emf measurements. Some polythermal sections, the isothermal section of the phase diagram at 400K, and the liquidus-surface projection for this system are constructed. The types and coordinates of invariant and univariant equilibria are determined. It is shown that the system is non-diagonal. Broad regions of solid solutions are found on the basis of the binary compounds Tl2S and Tl2Se and along the boundary system Sb2S3-Sb2Se3 and the sections Tl3SbS3-Tl3SbSe3, TlSbS2-TlSbSe2, and TlSb3S5-TlSb3Se5 of the phase diagram.  相似文献   

9.
The complex Na3(NH4)2[Ir(SO3)2Cl4]·4H2O was examined with single crystal X-ray diffraction and IR spectroscopy. Crystal data: a = 7.3144(4) Å, b = 10.0698(5) Å, c = 12.3748(6) Å, β = 106.203(1)°, V = 875.26(8) Å3, space group P21/c, Z = 2, d calc = 2.547 g/cm3. In the complex anion two trans SO 3 2? groups are coordinated to iridium through the S atom. The splitting of O-H bending vibrations of crystallization water molecules and N-H ones of the ammonium cation is considered in the context of different types of interactions with the closest neighbors in the structure.  相似文献   

10.
The structure of tri-μ2-disulfido-μ3-thiotris(diethyldithiocarbamato)-S,S′-triangle-trimolybdenum iodide [Mo33-S)(μ2-S2)3(Et2NCS2)3]I was determined. The compound was characterized by differential thermal analysis and IR, Raman, and X-ray electronic spectroscopy.  相似文献   

11.
The structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)·2H2O is determined by single crystal X-ray diffraction. The crystallographic characteristics are as follows: a = 8.9414(4) Å, b = 14.5330(5) Å, c = 24.9383(9) Å, V = 3240.6(2) Å3, space group Pbca, Z = 8. The Co(III) atoms have a slightly distorted octahedral coordination formed by three nitrogen atoms belonging to nitro groups (Co–Nav is 1.91 Å) and three oxygen atoms belonging to hydroxyl groups (Co–Oav is 1.93 Å). The hydroxyl groups act as μ3-bridges between the metal atoms. The geometric characteristics are analyzed and the packing motif is determined.  相似文献   

12.
Composite solid electrolytes were synthesized from the organic salt dimethylammonium chloride (1–x)C2H8NCl–xAl2O3. Their physicochemical properties were studied. In the starting C2H8NCl salt, there is a phase transition at 39°C accompanied by an increase in conductivity by two orders of magnitude. The conductivity of the high-temperature phase is 9.3 × 10–6 S/cm at 160°C. A differential scanning calorimetry study showed that the salt in the composites spreads over the oxide surface and at x > 0.6 the salt melting enthalpy decreases to zero. The conductivity of the resulting composites was studied by impedance spectroscopy. It was shown that heterogeneous doping leads to a sharp increase in ion conductivity to 7.0 × 10–3 S/cm at 160°C and a decrease in the activation energy to 0.55 eV.  相似文献   

13.
Component interactions in the CsBr—Cs2ZnBr4—Cs2CdBr4—Cs2HgBr4 system were studied using differential thermal analysis (DTA) and powder X-ra y diffraction. The system is characterized by a continuous solid solution series. New compounds have not been found.  相似文献   

14.
The boundaries of the glass formation region in the ternary system La2O3–As2S3–Er2O3 were found. Transparent glass of composition (La2O3)0.03(As2S3)0.90(Er2O3)0.07 was studied by X-ray photoelectron and Raman spectroscopy. The intensities of the bands characterizing As–S, La–O, and Er–O bonds increased, and these bands were shifted toward higher energies. This was due to an increase in the covalence of these bonds and probably due to the formation of new bonds in the glasses. Samples in the glass formation region are resistant at 300 K to air, water, and organic solvents.  相似文献   

15.
A new compound {[Cu(En)2]2V2O7} · 4H2O (I) (En = ethanediamine) has been synthesized by the combination of hydrothermal and solvent evaporation method and characterized by single-crystal X-ray diffraction (CIF file CCDC no. 1450218), IR, UV-Vis spectra, thermogravimetric analysis, powder X-ray diffraction, and fluorescence analysis. Crystal data for I: C8H40Cu2N8O11V2, Mr = 653.44, orthorhombic, space group Cmca, a = 18.559(11), b = 17.583(11), c = 7.600(6) Å, V = 2480(3) Å3, and Z = 4. Interestingly, two [Cu(En)2]2+ coordination cations are bridged by the [V2O7]4– unit to build up a neutral framework compound.  相似文献   

16.
A new neptunium(V) complex [(NpO2)2(CH3COO)2(H2O)] ? 2H2O was synthesized and its crystal structure was determined. The unit cell parameters are: a = 24.007(10) Å, b = 6.779(3) Å, c = 8.076(3) Å, space group Pnma, Z = 4, V = 1314.2(9) Å3, R = 0.049, wR(F2) = 0.105. The crystal structure of the compound is composed of neutral [(NpO2)2(CH3COO)2(H2O)] layers and molecules of the water of crystallization. Each of the crystallographically independent neptunoyl ions performs a bidentate function thus forming a composite system of cation-cation bonds.  相似文献   

17.
A new Co(III) complex of 1,2-cyclohexanedionedioxime and thiocarbamide with an SO 4 2? anion and solvation water molecules in the outer sphere has been synthesized and its structure has been defined. Orthorhombic crystals, a = 11.659(2) Å, b = 26.448(5) Å, c = 30.142(6) Å, V = 9295(3) Å 3, Z = 8, dcalc = 1.599 g/cm3, space group Pbca; final R index is 0.0578 for 8221 reflections with I > 2σ(I). In the octahedral Co(III) complex, two 1,2-cyclohexanedionedioxime residues lie in the equatorial plane, while two thiocarbamide molecules are in the axial plane. Intramolecular bonds: N-H…O and O-H…O type hydrogen bonds and π-π interactions that stabilize the complex cations. In crystal, the components are linked by N-H…O and O-H…O hydrogen bonds into a 3D framework.  相似文献   

18.
Phase formation in the Na2MoO4-K2MoO4-H2O system was studied at 25°C. Two incongruently saturating complex phases are formed in this system: Na3K(MoO4)2 · 9H2O and NaK3(MoO4)2. The densities, refractive indices, and dynamic viscosities of saturated solutions of the system were determined; molar volume and ionic strength isotherms were calculated. A correlation relation was found between solubility and solution properties in the system. The indicated double salts were recovered and characterized using chemical analysis, powder X-ray diffraction, complex thermal analysis, and IR spectroscopy.  相似文献   

19.
Binuclear iron nitrosyl complex Na2[Fe2(S2O3)2(NO)4] · 4H2O (I) was synthesized by the reaction of iron(II) sulfate with sodium thiosulfate in the flow of NO gas. According to X-ray diffraction data, the [Fe2(S2O3)2(NO)4]2– anion has binuclear centrosymmetric structure with Fe atoms bonded by the µ-S atoms of thiosulfate groups. The isomeric shift for complex I =0.168(1) mm/s and quadrupole splitting E Q =1.288 mm/s at T=80 K. When heated, complex I transforms to Na2[Fe2(S2O3)2(NO)4] (II), whose unit cell parameters found by X-ray diffraction method differ from those of complex I. The process of transformation of I to II was studied by calorimetric method. Complex I transforms to complex II without chemical decomposition, which was confirmed by IR and mass spectroscopy data.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 323–328.Original Russian Text Copyright © 2005 by Sanina, Aldoshin, Rudneva, Golovina, Shilov, Shulga, Martynenko, Ovanesyan.  相似文献   

20.
A method for producing synthetic troegerite of composition(UO2)3(AsO4)2 · 12H2. Owas developed. X-ray diffraction, IR spectrometry, X-ray fluorescence analysis, and scanning calorimetry were used to study its dehydration and thermal decomposition, to solve the structgure, and to determine X-ray diffraction and IR spectroscopic characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号