首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This article presents an idea in the finite element methods (FEMs) for obtaining two-sided bounds of exact eigenvalues. This approach is based on the combination of nonconforming methods giving lower bounds of the eigenvalues and a postprocessing technique using conforming finite elements. Our results hold for the second and fourth-order problems defined on two-dimensional domains. First, we list analytic and experimental results concerning triangular and rectangular nonconforming elements which give at least asymptotically lower bounds of the exact eigenvalues. We present some new numerical experiments for the plate bending problem on a rectangular domain. The main result is that if we know an estimate from below by nonconforming FEM, then by using a postprocessing procedure we can obtain two-sided bounds of the first (essential) eigenvalue. For the other eigenvalues λl, l = 2, 3, …, we prove and give conditions when this method is applicable. Finally, the numerical results presented and discussed in the paper illustrate the efficiency of our method.  相似文献   

2.
We solve the vertex p-centre problem optimally using an exact method that considers both upper and lower bounds as part of its search engine. Tight upper bounds are generated quickly via an efficient three-level heuristic, which are then used to derive potential ‘lower bounds’ accordingly. These two pieces of information when used together make our chosen exact method more efficient at obtaining optimal solutions relatively quickly. The proposed implementation produced excellent results when tested on the OR Library data set. This integrated approach can be adopted for those exact methods that consider both upper and lower bounds within their search engine and hence provide a wider spectrum of applicability in other hard combinatorial problems.  相似文献   

3.
In this paper we study the NP-hard scheduling problem of minimizing total completion time in a two-machine flow shop. Five known lower bounds are discussed and two new ones are presented. A new dominance criterion is also proposed. Several versions of a branch and bound method are derived by applying, both individually and combined, these lower bounds. A heuristic procedure is also presented that uses a constructive O(n2) time method, which computes a good starting solution, together with a neighborhood search based on pairwise interchanges. Computational results show that the exact method can handle problems of up to 30 jobs in size within a reasonable amount of time and that the heuristic procedure has an average error of less than 0.5% from the optimal value and less than 2.7% from the lower bound.  相似文献   

4.
The popular MITC finite elements used for the approximation of the Reissner–Mindlin plate are extended to the case where elements of non-uniform degree p distribution are used on locally refined meshes. Such an extension is of particular interest to the hp-version and hp-adaptive finite element methods. A priori error bounds are provided showing that the method is locking-free. The analysis is based on new approximation theoretic results for non-uniform Brezzi–Douglas–Fortin–Marini spaces, and extends the results obtained in the case of uniform order approximation on globally quasi-uniform meshes presented by Stenberg and Suri (SIAM J. Numer. Anal. 34 (1997) 544). Numerical examples illustrating the theoretical results and comparing the performance with alternative standard Galerkin approaches are presented for two new benchmark problems with known analytic solution, including the case where the shear stress exhibits a boundary layer. The new method is observed to be locking-free and able to provide exponential rates of convergence even in the presence of boundary layers.  相似文献   

5.
Summary In the present work the problem of finding lower bounds for the zeros of an analytic function is reduced by a Hilbert space technique to the well-known problem of finding upper bounds for the zeros of a polynomial. Several lower bounds for all the zeros of analytic functions are thus found, which are always better than the well-known Carmichael-Mason inequality. Several numerical examples are also given and a comparison of our bounds with well-known bounds in literature and/or the exact solution is made.  相似文献   

6.
We consider the numerical approximation of a singularly perturbed time delayed convection diffusion problem on a rectangular domain. Assuming that the coefficients of the differential equation be smooth, we construct and analyze a higher order accurate finite difference method that converges uniformly with respect to the singular perturbation parameter. The method presented is a combination of the central difference spatial discretization on a Shishkin mesh and a weighted difference time discretization on a uniform mesh. A?priori explicit bounds on the solution of the problem are established. These bounds on the solution and its derivatives are obtained using a suitable decomposition of the solution into regular and layer components. It is shown that the proposed method is $L_{2}^{h}$ -stable. The analysis done permits its extension to the case of adaptive meshes which may be used to improve the solution. Numerical examples are presented to demonstrate the effectiveness of the method. The convergence obtained in practical satisfies the theoretical predictions.  相似文献   

7.
Frobenius has stated the following problem. Suppose thata 1, a2, ?, an are given positive integers and g.c.d. (a 1, ? , an) = 1. The problem is to determine the greatest positive integerg so that the equation $$\sum\limits_{i = 1}^n {a_i x_i = g} $$ has no nonnegative integer solution. Showing the interrelation of the original problem and discrete optimization we give lower bounds for this number using Gomory cuts which are tools for solving discrete programming problems. In the first section an important theorem is cited after some remarks. In Section 2 we state a parametric knapsack problem. The Frobenius problem is equivalent with finding the value of the parameter where the optimal objective function value is maximal. The basis of this reformulation is the above mentioned theorem. Gomory's cutting plane method is applied for the knapsack problem in Section 3. Only one cut is generated and we make one dual simplex step after cutting the linear programming optimum of the knapsack problem. Applying this result we gain lower bounds for the Frobenius problem in Section 4. In the last section we show that the bounds are sharp in the sense that there are examples with arbitrary many coefficients where the lower bounds and the exact solution of the Frobenius problem coincide.  相似文献   

8.
We offer the exact solution of the degree-diameter problem for planar graphs in the case of even diameter 2d and large degree Δ≥6(12d+1). New graph examples are constructed improving the lower bounds for Δ≥5.  相似文献   

9.
The Multiple Knapsack Problem (MKP) is the problem of assigning a subset of n items to m distinct knapsacks, such that the total profit sum of the selected items is maximized, without exceeding the capacity of each of the knapsacks. The problem has several applications in naval as well as financial management. A new exact algorithm for the MKP is presented, which is specially designed for solving large problem instances. The recursive branch-and-bound algorithm applies surrogate relaxation for deriving upper bounds, while lower bounds are obtained by splitting the surrogate solution into the m knapsacks by solving a series of Subset-sum Problems. A new separable dynamic programming algorithm is presented for the solution of Subset-sum Problems, and we also use this algorithm for tightening the capacity constraints in order to obtain better upper bounds. The developed algorithm is compared to the mtm algorithm by Martello and Toth, showing the benefits of the new approach. A surprising result is that large instances with n=100 000 items may be solved in less than a second, and the algorithm has a stable performance even for instances with coefficients in a moderately large range.  相似文献   

10.
A posteriori error estimators for the Stokes equations   总被引:5,自引:0,他引:5  
Summary We present two a posteriori error estimators for the mini-element discretization of the Stokes equations. One is based on a suitable evaluation of the residual of the finite element solution. The other one is based on the solution of suitable local Stokes problems involving the residual of the finite element solution. Both estimators are globally upper and locally lower bounds for the error of the finite element discretization. Numerical examples show their efficiency both in estimating the error and in controlling an automatic, self-adaptive mesh-refinement process. The methods presented here can easily be generalized to the Navier-Stokes equations and to other discretization schemes.This work was accomplished at the Universität Heidelberg with the support of the Deutsche Forschungsgemeinschaft  相似文献   

11.
The exponential convergence rate in entroy is studied for symmetric forms, with a special attention to the Markov chain with a state space having two points only. Some upper and lower bounds of the rate are obtained and five examples with precise or qualitatively exact estimates are presented.   相似文献   

12.
In this article, we study adaptive stabilized mixed finite volume methods for the incompressible flows approximated using the lower order elements. A residual type of a posteriori error estimator is designed and studied with the derivation of upper and lower bounds between the exact solution and the finite volume solution. A discrete local lower bound between two successive finite volume solutions is also obtained. Also, convergence of the adaptive stabilized mixed finite volume methods is established. The presented methods have three prominent features. First, it is of practical convenience in real applications with the same partitions for velocity and pressure. Second, less computational time is required by easily applying both the lower order elements and the local grid refinement necessary for the elements of interest. Third, compared with the standard finite element method, its analysis of H1‐norm and L2‐norm for the velocity and pressure are usually derived without any high order regularity conditions on the exact solution. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1424–1443, 2015  相似文献   

13.
We consider an extrapolation method, based on a linear stationary iterative method of first degree, for the numerical solution of the linear system Au=b. We obtain upper bounds for the minimum spectral radius of the extrapolation method as well as good optimum values for the extrapolation parameter. A number of applications and numerical examples are also presented which support the theory and show the efficiency of the obtained results.  相似文献   

14.
In this paper, the Cauchy problems for the Helmholtz equation are investigated. We propose two regularization methods to solve them. Convergence estimates are presented under an a-priori bounded assumption for the exact solution. Finally, the numerical examples show that the proposed numerical methods work effectively.  相似文献   

15.
This article presents two methods for computing interval bounds on the solutions of nonlinear, semi-explicit, index-one differential-algebraic equations (DAEs). Part 1 presents theoretical developments, while Part 2 discusses implementation and numerical examples. The primary theoretical contributions are (1) an interval inclusion test for existence and uniqueness of a solution, and (2) sufficient conditions, in terms of differential inequalities, for two functions to describe componentwise upper and lower bounds on this solution, point-wise in the independent variable. The first proposed method applies these results sequentially in a two-phase algorithm analogous to validated integration methods for ordinary differential equations. The second method unifies these steps to characterize bounds as the solutions of an auxiliary system of DAEs. Efficient implementations of both are described using interval computations and demonstrated on numerical examples.  相似文献   

16.
This article presents two methods for computing interval bounds on the solutions of nonlinear, semi-explicit, index-one differential-algebraic equations (DAEs). Part 1 presents theoretical developments, while Part 2 discusses implementation and numerical examples. The primary theoretical contributions are (1) an interval inclusion test for existence and uniqueness of a solution, and (2) sufficient conditions, in terms of differential inequalities, for two functions to describe componentwise upper and lower bounds on this solution, point-wise in the independent variable. The first proposed method applies these results sequentially in a two-phase algorithm analogous to validated integration methods for ordinary differential equations (ODEs). The second method unifies these steps to characterize bounds as the solutions of an auxiliary system of DAEs. Efficient implementations of both are described using interval computations and demonstrated on numerical examples.  相似文献   

17.
In this paper, we present a cut-and-solve (CS) based exact algorithm for the Single Source Capacitated Facility Location Problem (SSCFLP). At each level of CS’s branching tree, it has only two nodes, corresponding to the Sparse Problem (SP) and the Dense Problem (DP), respectively. The SP, whose solution space is relatively small with the values of some variables fixed to zero, is solved to optimality by using a commercial MIP solver and its solution if it exists provides an upper bound to the SSCFLP. Meanwhile, the resolution of the LP of DP provides a lower bound for the SSCFLP. A cutting plane method which combines the lifted cover inequalities and Fenchel cutting planes to separate the 0–1 knapsack polytopes is applied to strengthen the lower bound of SSCFLP and that of DP. These lower bounds are further tightened with a partial integrality strategy. Numerical tests on benchmark instances demonstrate the effectiveness of the proposed cutting plane algorithm and the partial integrality strategy in reducing integrality gap and the effectiveness of the CS approach in searching an optimal solution in a reasonable time. Computational results on large sized instances are also presented.  相似文献   

18.
Summary In this paper an energy conserving modification of the well-known extrapolation methods for solving theN-body problem is presented. The method is compared with the most commonly used extrapolation methods. It appears that the presented modification yields a better approximation of the exact solution. Computer examples are given.  相似文献   

19.
We present active set methods to evaluate the exact analytic efficient solution set for multi-criteria convex quadratic programming problems (MCQP) subject to linear constraints. The idea is based on the observations that a strictly convex programming problem admits a unique solution, and that the efficient solution set for a multi-criteria strictly convex quadratic programming problem with linear equality constraints can be parameterized. The case of bi-criteria quadratic programming (BCQP) is first discussed since many of the underlying ideas can be explained much more clearly in the case of two objectives. In particular we note that the efficient solution set of a BCQP problem is a curve on the surface of a polytope. The extension to problems with more than two objectives is straightforward albeit some slightly more complicated notation. Two numerical examples are given to illustrate the proposed methods.  相似文献   

20.
In this paper, the Cauchy problem for the Helmholtz equation is investigated. It is known that such problem is severely ill-posed. We propose a modified regularization method to solve it based on the solution given by the method of separation of variables. Convergence estimates are presented under two different a-priori bounded assumptions for the exact solution. Finally, numerical examples are given to show the effectiveness of the proposed numerical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号