首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.  相似文献   

2.
旋涂法快速制备双层二元胶体微球有序薄膜   总被引:2,自引:0,他引:2       下载免费PDF全文
刘忍肖  董鹏  陈胜利 《物理学报》2009,58(4):2820-2828
以较大粒径的聚苯乙烯或SiO2胶体微球的单层有序薄膜作基膜,较小粒径的SiO2微球作第二层,用分步旋涂法快速制备了二元双层胶体微球复合有序薄膜.膜中小粒径微球与大粒径微球的粒径比γ=020—056,大粒径与小粒径微球的排列方式可表示为LSxx=1,2,…,13).旋涂速度、旋涂时间、微球悬浮介质的黏度、悬浮液中微球的数密度、旋涂衬底的可润湿性等因素均会影响旋涂组装胶粒薄膜的质量.在旋涂衬底能够被胶体微球悬浮介质完全润湿的前提下,适宜的胶体微球数密度、旋涂速度、旋涂时间是旋涂组装有序薄膜的必要条件. 关键词: 复合有序薄膜 分步旋涂 胶体微球模板  相似文献   

3.
The influence of interface porosity on the wetting properties of colloid-polymer mixtures is studied within density functional theory for the Asakura-Oosawa-Vrij model at the surface of a quenched hard-sphere matrix. While the porosity hardly changes the location of the transition from partial to complete wetting at colloidal bulk gas-liquid coexistence, the onset of wetting, as signaled by the first discontinuous layering transition, can be efficiently controlled by tailoring the porosity. We furthermore find that the penetrability of the porous interface induces complete drying into the matrix upon approaching capillary coexistence.  相似文献   

4.
The one-dimensional coagulation of gold colloidal particles dispersed in organic solvent was investigated with transmission electron microscopy. The results indicate that the length of the nanoparticle chains can be modulated by changing the concentration of the solutions. It was also demonstrated that the wetting of the substrate surface hardly influenced the morphology of the nanoparticle chains, which revealed that the particle chains had been formed in the solution before deposition on the substrates. A general theoretical interpretation is provided to explain the linear coagulation of gold colloidal particles, on the basis of the asymmetrical distribution of the charges absorbed on the surface of the gold colloidal particles, as well as the action of the solvent molecules. Received: 8 April 2002 / Accepted: 1 July 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-025/361-9983, E-mail: jhliao@seu.edu.cn  相似文献   

5.
丁茗楠  梁逸浩  邢向军 《中国物理 B》2016,25(10):108201-108201
In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte.Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework.  相似文献   

6.
More than two decades ago, in a seminal paper John Cahn proposed scaling arguments for the possibility of a wetting transition in two coexisting fluid phases near the critical point. Since then, Cahn's model has been tested in many fluid systems and further refined by including the real interactions between the fluid and the solid wall. A fascinating consequence of the existence of a wetting transition is the possibility for a transition from weak to strong adsorption in the homogeneous phase. The situation is further enriched in nonstandard geometries having special geometrical constraints. The subject of this review concerns one such situation, where charge-stabilized colloidal particles are suspended in the homogeneous region of a binary liquid mixture. In this case, the preferential adsorption of one of the liquid components on to the colloid surface completely modifies the stability of the particles leading to an aggregation process. Although the exact mechanism underlying the adsorption phenomenon is still debated, it is closely related to the wetting transition. Recent experimental developments concerning the static and dynamic aspects of this phenomenon are reviewed. In addition, the main findings of a theoretical model based on the adsorption-modified electrostatic interactions between the colloidal particles are discussed.  相似文献   

7.
We theoretically study binary mixtures of thin and thick hard rods with diameter ratio more extreme than 1:4. The bulk phase diagram of these systems exhibits a triple point, where an isotropic (I) phase coexists with two nematic phases ( N1 and N2) of different composition. Using density functional theory, we predict that the I-N2 interface is completely wet by N1 upon approach of the the I-N1-N2 triple point. This entropic triple point wetting should be experimentally observable in colloidal suspensions of rodlike particles.  相似文献   

8.
In this work we characterize the configurational space of a short chain of colloidal particles as a function of the range of directional and heterogeneous isotropic interactions. The individual particles forming the chain are colloids decorated with patches that act as interaction sites between them. We show, using computer simulations, that it is possible to sample the relative probability of occurrence of a structure with a sequence in the space of all possible realizations of the chain. The results presented here represent a first attempt to map the space of possible configurations that a chain of colloidal particles may adopt. Knowledge of such a space is crucial for a possible application of colloidal chains as models for designable self-assembling systems.  相似文献   

9.
In this Letter, we demonstrate that the symmetry of the elastic interaction between the dipolar and quadrupolar colloidal particles in the nematic liquid crystal leads to a novel variety of 2D nematic "binary" colloidal crystals, which have not been observed in any colloidal system. The dipolar-quadrupolar interaction is highly anisotropic and shows a power-law dependence when the particles approach each other along the director field with a pair-binding energy of the order of several thousands of k(B)T for 4 microm diameter colloids.  相似文献   

10.
本文探讨了中性多缔合位点Patchy胶体粒子系统的相图及其相关问题. 在研究中,计入了分子间的硬芯Lennard-Jones势和缔合作用,进而阐明了系统的流体相(F),无规密积相(RCP)和面心立方相(FCC)之间转变的相态结构. 在体系丰富的相结构中,F-F,F-RCP及F-FCC相转变以及描述粒子间联结性的溶胶-凝胶转变相互影响,致使一些相态在不同相互作用强度时可以呈现亚稳态和稳态. 同时,本文重点阐述了缔合能量以及patch数目对体系的临界温度、临界密度、临界三相点以及溶胶-凝胶转变等的调控机制.  相似文献   

11.
Recent studies of crystal nucleation and further microstructure formation in colloidal model systems are reviewed. Homogeneous as well as different heterogeneous nucleation scenarios will be discussed. We focus on the crystallization process of one component colloidal model systems with hard sphere like interaction, long range electrostatic interaction and depletion force induced attractive interaction. Heterogeneous crystallization on flat and smooth substrates, on structured substrates, induced by different kind of seed particles as well as inoculation adding a larger amount of seeds will be presented.  相似文献   

12.
We numerically study many-body interactions among colloidal particles suspended in a nematic liquid crystal, using a fluid particle dynamics method, which properly incorporates dynamical coupling among particles, nematic orientation, and flow field. Based on simulation results, we propose a new type of interparticle interaction in addition to well-known quadrupolar interaction for particles accompanying Saturn-ring defects. This interaction is mediated by the defect of the nematic phase: upon nematic ordering, a closed disclination loop binds more than two particles to form a sheetlike dynamically arrested structure. The interaction depends upon the topology of a disclination loop binding particles, which is determined by aggregation history.  相似文献   

13.
We develop an efficient simulation scheme to study a model suspension of equally sized colloidal hard spheres and nonadsorbing ideal polymer coils, both in bulk and adsorbed against a planar hard wall. The many-body character of the polymer-mediated effective interactions between the colloids yields a bulk phase diagram and adsorption phenomena that differ substantially from those found for pairwise simple fluids; e.g., we find an anomalously large bulk liquid regime and, far from the bulk triple point, three layering transitions in the partial wetting regime prior to a transition to complete wetting by colloidal liquid.  相似文献   

14.
王晓冬  董鹏  陈胜利  仪桂云 《物理学报》2007,56(3):1831-1836
系统地研究了亚微米聚苯乙烯微球在气-液界面的组装机理.聚苯乙烯微球在介质对流的带动下会到达悬浮液的表面并在气-液界面组装,气-液界面处聚苯乙烯微球间由弯液面产生的毛细管力是组装的推动力.界面处聚苯乙烯微球在干燥过程中其润湿性发生了转变,由完全润湿到部分润湿并最终变成不润湿,相应的聚苯乙烯微球与分散介质间接触角也逐渐增大.研究表明,只有接触角达到或超过某数值θcritical时,才能够出现气-液界面组装现象.考虑到PS胶粒晶体的表面是“规则”粗糙的表面,由Wenzel公式知θcritical大于测量值θ=22°.聚苯乙烯微球润湿性的转变是界面组装发生和持续进行的关键性因素. 关键词: 自组装 胶粒晶体 聚苯乙烯微球 润湿性  相似文献   

15.
王晓冬  董鹏  陈胜利  仪桂云 《物理学报》2007,56(5):3017-3021
系统地研究了亚微米聚苯乙烯微球在气-液界面的组装机理.聚苯乙烯微球在介质对流的带动下会到达悬浮液的表面并在气-液界面组装,气-液界面处聚苯乙烯微球间由弯液面产生的毛细管力是组装的推动力.界面处聚苯乙烯微球在干燥过程中其润湿性发生了转变,由完全润湿到部分润湿并最终变成不润湿,相应的聚苯乙烯微球与分散介质间接触角也逐渐增大.研究表明,只有接触角达到或超过某数值θcritical时,才能够出现气-液界面组装现象.考虑到PS胶粒晶体的表面是“规则”粗糙的表面,由Wenzel公式知θ′critical大于测量值θ=22°.聚苯乙烯微球润湿性的转变是界面组装发生和持续进行的关键性因素. 关键词: 自组装 胶粒晶体 聚苯乙烯微球 润湿性  相似文献   

16.
Colloidal particles of micrometer size usually become irreversibly trapped at fluid interfaces if they are partially wetted by one phase. This opens the chance to create two–dimensional model systems where the effective interactions between the particles are possibly influenced by the presence of the interface to a great extent. We will review recent developments in the quantitive understanding of these effective interactions with a special emphasis on electrostatics and capillarity. Charged colloids of micrometer size at an interface form effective dipoles whose strength sensitively depends on the double layer structure. We discuss the success of modified Poisson–Boltzmann equations with regard to measured colloidal dipole moments. On the other hand, for somewhat larger particles capillary interactions arise which are long–ranged and analogous to two–dimensional screened Newtonian gravity with the capillary length λ as the screening length. For colloidal diameters of around 10 micrometer, the collective effect of these long–ranged capillary interactions will dominate thermal motion and residual, short–ranged repulsions, and results in an instability towards a collapsed state for a finite patch of particles. Such long–ranged interactions with the associated instability are also of interest in other branches of physics, such as self-gravitating fluids in cosmology, two–dimensional vortex flow in hydrodynamics, and bacterial chemotaxis in biology. Starting from the colloidal case we develop and discuss a dynamical “phase diagram” in the temperature and interaction range variables which appears to be of more general scope and applicable also to other systems.  相似文献   

17.
We have investigated the effects of a guest component (polymer or spherical colloidal particle) confined between flexible lamellar slits on the inter-lamellar interaction by means of a small-angle X-ray scattering technique and a neutron spin echo technique. The dominant interaction between flexible lamellar membranes without guest components is the Helfrich mechanism. The addition of a neutral polymer into the lamellar phase induces an attractive inter-lamellar interaction and finally destabilizes the lamellar phase. On the other hand, spherical colloidal particles confined between flexible lamellar membranes reduce the undulational fluctuations of lamellae and bring a repulsive inter-lamellar interaction. The behavior of the layer compression modulus of the lamellar membrane containing colloidal particles is well described by the entropical repulsive inter-lamellar interaction driven by steric hindrance.Received: 26 March 2004, Published online: 4 May 2004PACS: 82.70.Uv Surfactants, micellar solutions, vesicles, lamellae, amphiphilic systems, (hydrophilic and hydrophobic interactions) - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 83.80.Hj Suspensions, dispersions, pastes, slurries, colloids - 89.75.Fb Structures and organization in complex systems  相似文献   

18.
Colloidal suspensions are a classic example of confining systems developing large specific surfaces, presenting a rich variety of shapes and exhibiting complex organization on a length scale ranging from 1 nm to several micrometers. Two distinct confined dynamics are generally considered in such systems: (1) the embedded fluid dynamics entrapped in the pore network with two main contributions, surface interaction and long-range connectivity, and (2) the dynamics of the host matrix, associated with a time evolution of the interfacial geometry. This last contribution is particularly important during dynamic and structural transitions of colloidal suspensions such as jamming, glass transition, phase separations and flocculation. It is generally believed that the characteristic time scale needed to describe colloidal movement and interfacial geometrical reorganization is much slower than the dynamics of the embedded fluid (except in the trivial situation where the fluid molecule is irreversibly adsorbed to a colloidal surface). Thus, few connections are made between these two distinct dynamics. In this presentation, we show how the slow and confined water dynamics at proximity of a colloidal surface provides an original way to probe colloidal shape and colloidal orientation dynamics. Two topics are presented. First of all, water field-cycling NMR relaxometry is used to probe the glass transition and the strong rotational slowing down of a colloidal system made of plate-like particles, a synthetic clay (laponite). Second, we analyze the case of long colloidal thin rods (either mineral or biologic such as DNA cylinders) dispersed in very diluted suspensions. At large distance and/or long time, these particles appear as a portion of a line. We discuss how the embedded fluid dynamics can be sensitive to this morphological crossover and may provide information about the particle shape. Some comparisons with recent experiments are presented.  相似文献   

19.
We study a model in which particles interact with short-ranged attractive and long-ranged repulsive interactions, in an attempt to model the equilibrium cluster phase recently discovered in sterically stabilized colloidal systems in the presence of depletion interactions. At low packing fractions, particles form stable equilibrium clusters which act as building blocks of a cluster fluid. We study the possibility that cluster fluids generate a low-density disordered arrested phase, a gel, via a glass transition driven by the repulsive interaction. In this model the gel formation is formally described with the same physics of the glass formation.  相似文献   

20.
We demonstrate a variety of ordered patterns, including hexagonal structures and chains, formed by colloidal particles (droplets) at the free surface of a nematic liquid crystal (LC). The surface placement introduces a new type of particle interaction as compared to particles entirely in the LC bulk. Namely, director deformations caused by the particles lead to distortions of the interface and thus to capillary attraction. The elastic-capillary coupling is strong enough to remain relevant even at the micron-scale when its buoyancy-capillary counterpart becomes irrelevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号