首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A number of different stationary phases designed for hydrophobic interaction chromatography have been examined to assess their efficiency and resolving capability with respect to protein and peptide mixtures. A packing with an ether-bonded phase was substantially less hydrophobic than those with propyl- or phenyl-bonded surface chemistry. While the overall efficiencies of most columns were broadly similar with respect to most proteins, some proteins did chromatograph with enhanced efficiency on specific packings. The elution order of individual proteins was, with one or two exceptions, similar for all columns tested using comparable mobile phases. It differed, however, substantially from orders obtained with conventional reversed-phase alkyl-bonded phases and from the elution orders obtained when the hydrophobic packings were used in a reversed-phase mode, i.e. with an organic modifier gradient. Varying the salt used in the mobile phase and its pH under hydrophobic interaction conditions (high ionic strength) changed overall retentivities and also altered specific retention orders, thus offering possibilities of selective resolution of some mixtures.  相似文献   

2.
Novel microemulsion and micellar HPLC separations have been achieved using gradient elution and columns packed with reverse phase material. Initial attempts at gradient microemulsion liquid chromatography proved impossible on use of a microemulsion successfully used in capillary electrophoresis. Optimisation of the microemulsion composition allowed the generation of stable microemulsions to achieve separations in HPLC. The novel use of organic-solvent micellar chromatography in gradient elution mode was shown to give efficient separations. A range of efficient separations of pharmaceuticals and related impurities were obtained. Acidic, basic, and neutral solutes were resolved covering a wide range of water solubilities and polarities. Elution times were in the order of 4-15 minutes. Separations were briefly compared to those accomplished with a micellar HPLC system. It is proposed that gradient elution in both microemulsion and micellar HPLC can be regarded as a highly successful means of achieving resolution of complex mixtures and should be considered for routine analysis and further investigation.  相似文献   

3.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

4.
The increasing demand for cost‐efficient manufacturing of biopharmaceuticals has been the main driving force for the development of novel chromatography resins, which resulted in the development of multimodal or mixed‐mode chromatographic resins. Most of them combine electrostatic and hydrophobic functionalities and are designed to deliver unique selectivity and increased binding capacities also at increased ionic strength. However, the mechanism of the protein–resin interaction in mixed‐mode chromatography is still not fully understood. The performance of protein separations in mixed‐mode chromatography is consequently difficult to predict. In this work, we present a model combining both salt and pH dependence to characterize and to predict protein retention in mixed‐mode chromatography. The model parameters are determined based on simple linear pH gradient elution experiments at different ionic strengths and they are directly transferable for the prediction of salt‐induced elution at fixed pH. Validity of the model is demonstrated for a bispecific antibody and its product‐related impurities.  相似文献   

5.
Glycans were cleaved from gangliosides and separated by high-performance liquid chromatography (HPLC). The columns were packed with bonded stationary phases made of microparticulate, macroporous silica with serotonin, phenylpropanolamine or tryptamine as the biogenic amine ligate. The ganglioside oligosaccharides were eluted in the order of increasing number of sialic acid residues in the molecule and their retention decreased with the ionic strength of the mobile phase. Best selectivity was obtained in the pH range from 3.0 to 4.0. The two major sialic acids, N-acetylneuraminic and N-glycolylneuraminic acids, were separated by lectin affinity chromatography using an HPLC column packed with silica-bound wheat germ agglutinin and 10 mM phosphate buffer, pH 4.0, as the eluent. Throughout this study, isocratic elution was used and the column effluent was monitored at 195 nm.  相似文献   

6.
Summary The retention, selectivity and elution order of fluorescent 1,N6-etheno derivatives of diadenosine polyphosphates and their enzymatic degradation products on octadecyl and phenyl-bonded silica columns have been studied as a function of mobile phase pH, ionic strength and organic modifier content. Good separations of the compounds of interest were achieved using mobile phases of around 0.1M potassium phosphate buffers at neutral pH containing approximately 10% methanol or 4% acetonitrile for C18 columns and 5% methanol or 1.5% acetonitrile for phenyl columns. The data obtained were used to establish isocratic assays for diadenosine polyphosphate cleaving activities from chromaffin cells using Di(1,N6-ethenoadenosine) polyphosphates as fluorogenic substrate analogues followed by fluorescence detection.  相似文献   

7.
Liu Z  Zou H  Ye M 《Electrophoresis》2001,22(7):1298-1304
4-Dimethylamino-6-(4-methoxy-1-naphthyl)-1,3,5-triazine-2-hydrazine (DMNTH) is a novel derivatizing reagent specially designed for the determination of carbonyl compounds. In this work, we describe the separation of DMNTH-derivatized carbonyl compounds by reversed-phase capillary electrochromatography (CEC). After systematic investigations of the effects of experimental conditions viz. pH and concentration of buffer, type of stationary phase, injection volume of sample, organic modifier, and temperature, optimal conditions were found. The sample compounds, which were separated with gradient high performance liquid chromatography (HPLC), were separated by CEC under isocratic elution due to the high efficiency. Comparisons of separations by CEC and micellar electrokinetic chromatography (MEKC) were made.  相似文献   

8.
9.
考察了用微乳液毛细管电动色谱(MEEKC)分离蛋白质时微乳液组成等不同因素对分离的影响,并与胶束电动色谱进行对比,探讨了其分离机理,为蛋白质的分离鉴定提供了一种有力的工具.  相似文献   

10.
A rapid procedure for the analysis of glycopeptides has been developed using gel permeation high-performance liquid chromatography (HPLC). Glycopeptides derived by exhaustive pronase digestion of glycoproteins from radiolabeled human tumor and normal cell lines were chromatographed on DuPont GF-250 and GF-450 gel permeation columns in buffers containing non-ionic detergents. Effective separations of glycopeptides ranging in molecular mass from less than 600 daltons to more than 20,000 daltons, equivalent to the separation range of Sephadex G50 chromatography, were achieved in 7 min. The separations were dependent upon the use of an isocratic mobile phase, that contained a low-ionic-strength Tris buffer and Nonidet P-40 or Triton X-100. The mobilities of protein standards indicated the occurrence of a biphasic elution system, which favored the separation of species with molecular masses below 20,000 daltons. Glycopeptides isolated by this method could be applied directly to lectin or ion-exchange columns or could be digested with neuraminidase, endo H or other enzymes without further treatment. Removal of sialic acid from the glycopeptides caused a dramatic increase in retention time. Using this method, glycopeptides could be isolated rapidly and in high yield. The ease, speed and reproducibility of the separations and compatibility of the solvent systems with affinity or ion-exchange chromatography techniques make this gel permeation HPLC method an ideal initial step in the purification of glycopeptides.  相似文献   

11.
Strongly polar phenolic acids are weakly retained and often poorly separated in reversed-phase (RP) liquid chromatography. We prepared zwitterionic polymethacrylate monolithic columns for micro-HPLC by in situ co-polymerization in fused-silica capillaries. The capillary monolithic columns prepared under optimized polymerization conditions show some similarities with the conventional particulate commercial ZIC-HILIC silica-based columns, however have higher retention and better separation selectivity under reversed-phase conditions, so that they can be employed for dual-mode HILIC-RP separations of phenolic acids on a single column. The capillary polymethacrylate monolithic sulfobetaine columns show excellent thermal stability and improved performance at temperatures 60–80 °C. The effects of the operation conditions on separation were investigated, including the type and the concentration of the organic solvent in the aqueous-organic mobile phase (acetonitrile and methanol), the ionic strength of the acetate buffer and temperature. While the retention in the RP mode decreases at higher temperatures in mobile phases with relatively low concentrations of acetonitrile, it is almost independent of temperature at HILIC conditions in highly organic mobile phases. The best separation efficiency can be achieved using relatively high acetate buffer ionic strength (20–30 mmol L−1) and gradient elution with alternately increasing (HILIC mode) and decreasing (RP mode) concentration of aqueous buffer in aqueous acetonitrile. Applications of the monolithic sulfobetaine capillary columns in alternating HILIC-RP modes are demonstrated on the analysis of phenolic acids in a beer sample.  相似文献   

12.
The simultaneous determination of Tarabine PFS and Adriblastine by two independent techniques, viz. micellar electrokinetic chromatography (MEKC) and high performance liquid chromatography (HPLC), has been studied. For MEKC analysis, separations and identifications were accomplished using uncoated fused-silica capillaries and injections were performed in the hydrodynamic mode. The running buffer consisted of 0.05 M borate/phosphate pH 8.70, with 0.10 M SDS at an operating voltage of 15.0 kV and the temperature held at 25.0 degrees C. Under these conditions, the migration times of Tarabine PFS and Adriblastine were 2.70 and 6.40 min, respectively. Calibration curves were established for 0.010-0.300 microg/mL (r = 0.99) Tarabine PFS and 8.000-120.0 microg/mL (r = 0.99) Adriblastine. The limit of detection (LOD) was estimated and found to be 0.003 and 3.000 microg/mL of Tarabine PFS and Adriblastine, respectively. The limit of quantitation (LOQ) was found to be 0.009 and 8.000 microg/mL of Tarabine PFS and Adriblastine, respectively. For HPLC analysis, separations and determinations were performed on teicoplanin stationary phase with reversed mobile phase containing methanol:buffer pH 4.05 (20.0:80.0%, v/v) at 285 nm. Calibration curves were established for 3.000-90.00 microg/mL (r = 0.99) Tarabine PFS and for 10.00-120.0 microg/mL (r = 0.99) Adriblastine. LOD and LOQ were estimated and found to be 0.950 and 2.050 microg/mL of Tarabine PFS and 3.130 and 9.250 microg/mL of Adriblastine, respectively. Both MEKC and HPLC methods were applied for the simultaneous determination of analytes in urine samples. It was found that 8.00-10.0% (Tarabine PFS) and 13.0-15.0% (Adriblastine) of the injected dose was recovered in urine samples with 99.5-102% recovery.  相似文献   

13.
Non-substituted naphthalene sulphonic acids are strong acids, which are completely ionised in aqueous and aqueous-organic solutions. Because of repulsive electrostatic interactions, they are more or less excluded from the pores of the column packing materials commonly used in reversed-phase chromatography. The ionic exclusion can be suppressed by increasing the ionic strength of the mobile phase. In aqueous sodium sulphate solutions, very good selectivity was observed for isomeric naphthalene di- and tri-sulphonic acids, allowing reversed-phase separations of these strongly ionic compounds without addition of ion-pairing reagents to the mobile phase. The retention of the isomeric acids increases proportionally to the dipole moment, which can be explained by its effect on increasing exposure of the naphthalene ring to hydrophobic interactions with the non-polar stationary phases. Chromatographic behaviour of isomeric naphthalene di- and trisulphonic acids was investigated on 25 different columns for reversed-phase chromatography. The elution order of the isomers is the same on all the columns, but very strong stationary phase effects were observed on the retention and on the band asymmetry, depending on polar interactions with residual silanol groups and other polar adsorption centres in the stationary phases. These effects are independent of the organic solvents, as the tests are performed in purely aqueous mobile phases and allow classification of the columns into several groups.  相似文献   

14.
Capillary electroendoendosmotic chromatography (CEC), being a hybrid of high-performance liquid chromatography (HPLC) and capillary electrophoresis, offers considerable changes to enhance column efficiency, speed of analysis and additional selectivity as compared to the parent methods. The analytes are driven by the electroendosmotic flow (EOF) and separated by surface-solute interactions as well as by differences in electromigration. In this paper on the separation of peptides on C18 reversed-phase and mixed-mode (sulphonic acid-n-alkyl) packings in CEC and electrically assisted reversed-phase gradient nano-LC are investigated. It is shown that mixed mode packings generate a higher EOF than reversed-phase packings that is scarcely dependent on the pH of the eluent. Applying a potential in gradient elution reversed-phase nano-LC of peptides shortens the analysis time as compared to separations without a potential. Electrically assisted reversed-phase gradient elution nano-LC is a powerful separation tool for analysis of tryptic digests. Peptides can be successfully resolved in acidic organic mobile phase at pH 2-3 with and without trifluoroacid as ion pairing reagent under isocratic conditions. It is demonstrated that CEC with mixed mode packing and an eluent of pH 2.3 with varying acetonitrile content can be applied to monitor impurities in a synthetic peptide.  相似文献   

15.
An investigation on the high‐performance liquid chromatography enantioseparation of 12 polyhalogenated 4,4′‐bipyridines on polysaccharide‐based chiral stationary phases is described. The overall study was directed toward the generation of efficient separations in order to obtain pure atropisomers that will serve as ligands for building homochiral metal organic frameworks. Four coated columns—namely, Lux Cellulose‐1, Lux Cellulose‐2, Lux Cellulose‐4, and Lux Amylose‐2—and two immobilized columns—namely, Chiralpak IC and IA—were used under normal, polar organic, and reversed‐phase elution modes. Moreover, Chiralcel OJ was considered under normal‐phase and polar organic conditions. The effect of the chiral selector and mobile phase composition on the enantioseparation, the enantiomer elution order and the beneficial effect of nonstandard solvents were studied. The effect of water in the mobile phase on the enantioselectivity and retention was investigated and retention profiles typical of hydrophilic interaction liquid chromatography were observed. Interesting phenomena of solvent‐induced enantiomer elution order reversal occurred under normal‐phase mode. All the considered 4,4′‐bipyridines were enantioseparated at the multimilligram level.  相似文献   

16.
The capillary electrochromatographic separations of three acidic enantiomers (carprofen, coumachlor and warfarin) were studied on a capillary column packed with 5 microm (3R,4S)-Whelk-O 1 chiral stationary phase. The influence of several experimental parameters (mobile phase pH, type of background electrolyte, acetonitrile ratio, temperature, applied voltage and ionic strength) on electroosmotic flow velocity, retention factor, selectivity factor, efficiency, resolution and effectiveness of chiral separation was evaluated. It was notable that the optimum resolution of the acidic enantiomers was achieved at pH 3.0 phosphate buffer, suggesting that capillary electrochromatography in the ion-suppressed mode can be applied for chiral separations of a range of acidic compounds.  相似文献   

17.
We prepared hybrid particle-monolithic polymethacrylate columns for micro-HPLC by in situ polymerization in fused silica capillaries pre-packed with 3–5 μm C18 and aminopropyl silica bonded particles, using polymerization mixtures based on laurylmethacrylate–ethylene dimethacrylate (co)polymers for the reversed-phase (RP) mode and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) zwitterionic (co)polymers for the hydrophilic interaction (HILIC) mode. The hybrid particle-monolithic columns showed reduced porosity and hold-up volumes, approximately 2–2.5 times lower in comparison to the pure monolithic columns prepared in the whole volume of empty capillaries. The elution volumes of sample compounds are also generally lower in comparison to packed or pure monolithic columns. The efficiency and permeability of the hybrid columns are intermediate in between the properties of the reference pure monolithic and particle-packed columns. The chemistries of the embedded solid particles and of the interparticle monolithic moiety in the hybrid capillary columns contribute to the retention to various degrees, affecting the selectivity of separation. Some hybrid columns provided improved separations of proteins in comparison to the reference particle-packed columns in the reversed-phase mode. Zwitterionic hybrid particle-monolithic columns show dual mode retention HILIC/RP behaviour depending on the composition of the mobile phase and allow separations of polar compounds such as phenolic acids in the HILIC mode at lower concentrations of acetonitrile and, often in shorter analysis time in comparison to particle-packed and full-volume monolithic columns.  相似文献   

18.
张晶  陈晓东  李丽群  贺建峰  范军  章伟光 《色谱》2016,34(3):321-326
超临界流体色谱(SFC)分离具有速度快、分离效率高、溶剂消耗少等优点,近年来在手性化合物的分离分析中得到诸多应用。本文对比研究了涂覆型多糖手性色谱柱在SFC和高效液相色谱(HPLC)上拆分24种手性化合物的差异。通过比较这些化合物在色谱柱上的保留时间和选择因子等发现多数化合物在SFC上的分离效率要高于其在HPLC上的分离效率,但HPLC对轴手性化合物的分离效率要优于SFC。SFC和HPLC的分离表现出一定的互补性,随着苯环侧链烷基的碳数增加,化合物在SFC上的保留逐渐增强,而在HPLC的保留却逐渐减弱。叶菌唑在使用SFC和HPLC分析时出现了洗脱顺序反转的现象。这些结果为SFC手性拆分提供了参考。  相似文献   

19.
Reversed-phase ultra-performance liquid chromatography was used for biopolymer separations in isocratic and gradient mode. The gradient elution mode was employed to estimate the optimal mobile phase flow rate to obtain the best column efficiency and the peak capacity for three classes of analytes: peptides, oligonucleotides and proteins. The results indicate that the flow rate of the Van Deemter optimum for 2.1 mm I.D. columns packed with a porous 1.7 microm C18 sorbent is below 0.2 mL/min for our analytes. However, the maximum peak capacity is achieved at flow rates between 0.15 and 1.0 mL/min, depending on the molecular weight of the analyte. The isocratic separation mode was utilized to measure the dependence of the retention factor on the mobile phase composition. Constants derived from isocratic experiments were utilized in a mathematical model based on gradient theory. Column peak capacity was predicted as a function of flow rate, gradient slope and column length. Predicted peak capacity trends were compared to experimental results.  相似文献   

20.
A stationary phase composed of silica-bonded sulfonated cyclofructan 6 (SCF6) was synthesized and evaluated for hydrophilic interaction chromatography (HILIC). The separation of a large variety of polar compounds was evaluated on different versions of the stationary phase and compared with the same separations obtained with commercially available HILIC columns. The new columns successfully separate polar and hydrophilic compounds including β blockers, xanthines, salicylic acid related compounds, nucleic acid bases, nucleosides, maltooligosaccharides, water soluble vitamins and amino acids. The separation conditions were optimized by changing the composition and the pH of the mobile phase. The dependence of analyte retention on temperature was studied using van't Hoff plots. The newly synthesized stationary phase showed broad applicability for HILIC mode separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号