首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

2.
Spiro scaffolds are being increasingly utilized in drug discovery due to their inherent three‐dimensionality and structural variations, resulting in new synthetic routes to introduce spiro building blocks into more pharmaceutically active molecules. Multicomponent cascade reactions, involving the in situ generation of carbonyl ylides from α‐diazocarbonyl compounds and aldehydes, and 1,3‐dipolar cycloadditon with 3‐arylideneoxindoles gave a novel class of dispirooxindole derivatives, namely 1,1′′‐dibenzyl‐5′‐(4‐chlorophenyl)‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C44H33ClN2O3, (I), 1′′‐acetyl‐1‐benzyl‐5′‐(4‐chlorophenyl)‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C39H29ClN2O4, (II), 1′′‐acetyl‐1‐benzyl‐4′,5′‐diphenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C39H30N2O4, (III), and 1′′‐acetyl‐1‐benzyl‐4′,5′‐diphenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione acetonitrile hemisolvate, C39H30N2O4·0.5C2H3N, (IV). All four compounds exist as racemic mixtures of the SSSR and RRRS stereoisomers. In these structures, the two H atoms of the dihydrofuran ring and the two substituted oxindole rings are in a trans orientation, facilitating intramolecular C—H...O and π–π interactions. These weak interactions play a prominent role in the structural stability and aid the highly regio‐ and diastereoselective synthesis. In each of the four structures, the molecular assembly in the crystal is also governed by weak noncovalent interactions. Compound (IV) is the solvated analogue of (III) and the two compounds show similar structural features.  相似文献   

3.
The challenging molecular architecture of spirooxindoles is appealing to chemists because it evokes novel synthetic strategies that address configurational demands and provides platforms for further reaction development. The [3+2] cycloaddition of the carbonyl ylide with arylideneoxindole via a five‐membered cyclic transition state gave a novel class of dispirooxindole derivatives, namely tert‐butyl 4′‐(4‐bromophenyl)‐1′′‐methyl‐2,2′′‐dioxo‐5′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐1‐carboxylate, C36H31BrN2O, (Ia), 5′‐(4‐bromophenyl)‐1,1′′‐dimethyl‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C32H25BrN2O3, (Ib), and tert‐butyl 1′′‐methyl‐2,2′′‐dioxo‐4′‐phenyl‐5′‐(p‐tolyl)‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐1‐carboxylate, C37H34N2O5, (Ic). Crystal structure analyses of these dispirooxindoles revealed the formation of two diastereoisomers selectively and confirmed their relative stereochemistry (SSSR and RRRS). In all three structures, intramolecular C—H...O and π–π interactions between oxindole and dihydrofuran rings are the key factors governing the regio‐ and stereoselectivity, and in the absence of conventional hydrogen bonds, their crystal packings are strengthened by intermolecular C—H...π interactions.  相似文献   

4.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

5.
The title complex, [Ni2Cl4(C22H17N3)2], was synthesized solvothermally. The molecule is a centrosymmetric dimer with the unique NiII centre in a distorted octahedral N3Cl3 coordination environment. The chloride bridges are highly asymmetric. In the 4′‐p‐tolyl‐2,2′:6′,2′′‐terpyridine ligand, the p‐tolyl group is perfectly coplanar with the attached pyridine ring, and this differs from the situation found in previously reported compounds; however, there are no π–π interactions between the ligands. The terminal Cl atom forms four intermolecular C—H...Cl hydrogen bonds with one methyl and three methine groups. The methyl group also forms intermolecular C—H...π interactions with a pyridine ring. These nonclassical hydrogen bonds extend the molecule into a three‐dimensional network.  相似文献   

6.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

7.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

8.
A three‐component reaction of isatin, 3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐amine, and piperidine‐2,4‐dione was treated in ionic liquids catalyzed by TsOH and provided an efficient and green method for the synthesis of spiro[indoline‐3,4′‐pyrazolo[3, 4‐b][1,6]naphthyridine]‐2,5′(1′H)‐dione derivatives in high yields.  相似文献   

9.
Having reference to an elongated structural modification of 2,2′‐bis(hydroxydiphenylmethyl)biphenyl, (I), the two 1,1′:4′,1′′‐terphenyl‐based diol hosts 2,2′′‐bis(hydroxydiphenylmethyl)‐1,1′:4′,1′′‐terphenyl, C44H34O2, (II), and 2,2′′‐bis[hydroxybis(4‐methylphenyl)methyl]‐1,1′:4′,1′′‐terphenyl, C48H42O2, (III), have been synthesized and studied with regard to their crystal structures involving different inclusions, i.e. (II) with dimethylformamide (DMF), C44H34O2·C2H6NO, denoted (IIa), (III) with DMF, C48H42O2·C2H6NO, denoted (IIIa), and (III) with acetonitrile, C48H42O2·CH3CN, denoted (IIIb). In the solvent‐free crystals of (II) and (III), the hydroxy H atoms are involved in intramolecular O—H...π hydrogen bonding, with the central arene ring of the terphenyl unit acting as an acceptor. The corresponding crystal structures are stabilized by intermolecular C—H...π contacts. Due to the distinctive acceptor character of the included DMF solvent species in the crystal structures of (IIa) and (IIIa), the guest molecule is coordinated to the host via O—H...O=C hydrogen bonding. In both crystal structures, infinite strands composed of alternating host and guest molecules represent the basic supramolecular aggregates. Within a given strand, the O atom of the solvent molecule acts as a bifurcated acceptor. Similar to the solvent‐free cases, the hydroxy H atoms in inclusion structure (IIIb) are involved in intramolecular hydrogen bonding, and there is thus a lack of host–guest interaction. As a result, the solvent molecules are accommodated as C—H...N hydrogen‐bonded inversion‐symmetric dimers in the channel‐like voids of the host lattice.  相似文献   

10.
The crystal structures of triethyl­ammonium adenosine cyclic 2′,3′‐phosphate {systematic name: triethyl­ammonium 4‐(6‐amino­purin‐9‐yl)‐6‐hydroxy­methyl‐2‐oxido‐2‐oxoperhydro­furano[3,4‐c][1,3,2]dioxaphosphole}, Et3NH(2′,3′‐cAMP) or C6H16N+·C10H11N5O6P, (I), and guanosine cyclic 2′,3′‐phosphate monohydrate {systematic name: triethyl­ammonium 6‐hydroxy­methyl‐2‐oxido‐2‐oxo‐4‐(6‐oxo‐1,6‐dihydro­purin‐9‐yl)perhydro­furano[3,4‐c][1,3,2]dioxaphosphole monohydrate}, [Et3NH(2′,3′‐cGMP)]·H2O or C6H16N+·C10H11N5O7P·H2O, (II), reveal different nucleobase orientations, viz. anti in (I) and syn in (II). These are stabilized by different inter‐ and intra­molecular hydrogen bonds. The structures also exhibit different ribose ring puckering [4E in (I) and 3T2 in (II)] and slightly different 1,3,2‐dioxaphospho­lane ring conformations, viz. envelope in (I) and puckered in (II). Infinite ribbons of 2′,3′‐cAMP and helical chains of 2′,3′‐cGMP ions, both formed by O—H⋯O, N—H⋯X and C—H⋯X (X = O or N) hydrogen‐bond contacts, characterize (I) and (II), respectively.  相似文献   

11.
Structurally diverse spiroheterocycles; spiro[pyrimido[2,1‐b ]benzothiazole‐3,3′‐chromene]‐2′,4′‐dione, spiro[pyrimido[2,1‐b ]benzothiazole‐3,5′‐pyrimidine]‐2′,4′,6′‐trione, and spiro[pyrimido[2,1‐b ]benz‐thiazole‐3,2′‐cyclohexane]‐1′,3′‐dione have been synthesized by an environmentally benign, efficient, and facile one‐pot pseudo‐four component reaction of 2‐aminobenzothiazoles with aromatic aldehydes and cyclic β‐diketones in aqueous medium. The process involves hetero‐Diels–Alder cycloaddition and provides facile access to spiroheterocycles fused with potentially interesting biologically active scaffolds. The configuration of hetero‐Diels–Alder cycloadduct has been ascertained through density functional theory calculations.  相似文献   

12.
A new, fast, and easy one‐pot cyclopropanation reaction of aromatic and aliphatic aldehydes with 1H‐indene‐1,3(2H)‐dione and cyanogen bromide (BrCN) was developed for synthesizing 3′‐(aryl[alkyl])‐dispiro[indan‐2,1′‐cyclopropane‐2′,2′′‐indan]‐1,1′′,3,3′′‐tetrone in excellent yields in a short time (about 15 s) under basic media. All structures were characterized using IR, 1H NMR, and 13C NMR spectroscopy techniques.  相似文献   

13.
Molecules of (S)‐6‐oxo‐1‐(thiophen‐2‐ylmethyl)piperidine‐2‐carboxylic acid, C11H13NO3S, crystallize as single enantiomers in the space group P21 and the thiophene ring is disordered over two positions, while (S)‐6‐oxo‐1‐(thiophen‐3‐ylmethyl)piperidine‐2‐carboxylic acid, C11H13NO3S, crystallizes as a single enantiomer in the space group P212121. Their absolute configurations were confirmed by anomalous dispersion effects in diffraction measurements on the crystals. The molecules of each compound are linked by a combination of strong O—H...O hydrogen bonds and weak C—H...O interactions, resulting in two‐ and three‐dimensional networks, respectively, in the crystal structures.  相似文献   

14.
The three pyran structures 6‐methylamino‐5‐nitro‐2,4‐diphenyl‐4H‐pyran‐3‐carbonitrile, C19H15N3O3, (I), 4‐(3‐fluorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14FN3O3, (II), and 4‐(4‐chlorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14ClN3O3, (III), differ in the nature of the aryl group at the 4‐position. The heterocyclic ring in all three structures adopts a flattened boat conformation. The dihedral angle between the pseudo‐axial phenyl substituent and the flat part of the pyran ring is 89.97 (1)° in (I), 80.11 (1)° in (II) and 87.77 (1)° in (III). In all three crystal structures, a strong intramolecular N—H...O hydrogen bond links the flat conjugated H—N—C=C—N—O fragment into a six‐membered ring. In (II), molecules are linked into dimeric aggregates by N—H... O(nitro) hydrogen bonds, generating an R22(12) graph‐set motif. In (III), intermolecular N—H...N and C—H...N hydrogen bonds link the molecules into a linear chain pattern generating C(8) and C(9) graph‐set motifs, respectively.  相似文献   

15.
X‐ray diffraction studies carried out on single crystals of the monomeric, viz. 5,6‐di­methoxy‐2H‐furo­[2,3‐h][1]benzo­pyran‐2‐one, C13H10O5, and dimeric, viz. 5,5′,6,6′‐tetra­methoxy‐3,3′,4,4′‐tetra­hydro‐2H,2′H‐3,3′:4,4′‐bi­(furo­[2,3‐h][1]benzo­pyran)‐2,2′‐dione, C26H20O10, forms of pimpinellin have revealed that, following cyclo­dimerization, the carbonyl groups are head‐to‐head with respect to one another. In the monomer, the heterocyclic ring is planar, but it exhibits a twisted‐boat conformation in the dimer. Both the monomer and the dimer interact through C—H⋯O interactions.  相似文献   

16.
A facile and efficient method for the synthesis of benzo[b ]pyrido[3,2‐f ][1,7]phenanthrolines and dipyrido[4,3‐b :3′,2′‐f ][1,7]phenanthrolines has been developed in high yields. Using EtOH as a solvent without any additionally basic catalysts, the three‐component reaction of aromatic aldehyde, 1,10‐phenanthrolin‐5‐amine, and dimedone or piperidine‐2,4‐dione affords two novel classes of fused phentacyclic heterocycles containing both pyridine and phenanthroline moieties.  相似文献   

17.
Novel pyrazolo[1′,5′:3,4][1,2,4]triazino[5,6-b][1,5]benzoxazepines 5, 6 and 8 were synthesized, and these compounds were converted into novel spiro[benzoxazole-2′,4(1H,3′H)-pyrazolo[5,1-c][1,2,4]triazines] 7 and 9 by ring transformation.  相似文献   

18.
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network.  相似文献   

19.
Dihydroberberine (systematic name: 9,10‐dimethoxy‐6,8‐dihydro‐5H‐1,3‐dioxolo[4,5‐g]isoquinolino[3,2‐a]isoquinoline), C20H19NO4, a reduced form of pharmacologically important berberine, crystallizes from ethanol without interstitial solvent. The molecule shows a dihedral angle of 27.94 (5)° between the two arene rings at the ends of the molecule, owing to the partial saturation of the inner quinolizine ring system. Although lacking classical O—H or N—H donors, the packing in the crystalline state is clearly governed by C—H...N and C—H...O hydrogen bonds involving the two acetal‐type C—H bonds of the 1,3‐dioxole ring. Each dihydroberberine molecule is engaged in four hydrogen bonds with neighbouring molecules, twice as donor and twice as acceptor, thus forming a two‐dimensional sheet network that lies parallel to the (100) plane.  相似文献   

20.
Derivatives of the new ring system pyrrolo[3,4‐e][1,2,3] triazolo[1,5‐a]pyrimidine 6 were prepared in high yields in one step by reaction of 3‐azidopyrrole 3 and substituted acetonitriles. Compound 6b rearranged, upon heating in dimethyl sulfoxide in the presence of water, to pyrrolo[3,4‐d][1,2,3]triazolo‐[1,5‐a]pyrimidine 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号