首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluctuations in sound amplitude provide important cues to the identity of many sounds including speech. Of interest here was whether the ability to detect these fluctuations can be improved with practice, and if so whether this learning generalizes to untrained cases. To address these issues, normal-hearing adults (n = 9) were trained to detect sinusoidal amplitude modulation (SAM; 80-Hz rate, 3-4 kHz bandpass carrier) 720 trials/day for 6-7 days and were tested before and after training on related SAM-detection and SAM-rate-discrimination conditions. Controls (n = 9) only participated in the pre- and post-tests. The trained listeners improved more than the controls on the trained condition between the pre- and post-tests, but different subgroups of trained listeners required different amounts of practice to reach asymptotic performance, ranging from 1 (n = 6) to 4-6 (n = 3) sessions. This training-induced learning did not generalize to detection with two untrained carrier spectra (5 kHz low-pass and 0.5-1.5 kHz bandpass) or to rate discrimination with the trained rate and carrier spectrum, but there was some indication that it generalized to detection with two untrained rates (30 and 150 Hz). Thus, practice improved the ability to detect amplitude modulation, but the generalization of this learning to untrained cases was somewhat limited.  相似文献   

2.
Learning to perceive pitch differences   总被引:2,自引:0,他引:2  
This paper reports two experiments concerning the stimulus specificity of pitch discrimination learning. In experiment 1, listeners were initially trained, during ten sessions (about 11,000 trials), to discriminate a monaural pure tone of 3000 Hz from ipsilateral pure tones with slightly different frequencies. The resulting perceptual learning (improvement in discrimination thresholds) appeared to be frequency-specific since, in subsequent sessions, new learning was observed when the 3000-Hz standard tone was replaced by a standard tone of 1200 Hz, or 6500 Hz. By contrast, a subsequent presentation of the initial tones to the contralateral ear showed that the initial learning was not, or was only weakly, ear-specific. In experiment 2, training in pitch discrimination was initially provided using complex tones that consisted of harmonics 3-7 of a missing fundamental (near 100 Hz for some listeners, 500 Hz for others). Subsequently, the standard complex was replaced by a standard pure tone with a frequency which could be either equal to the standard complex's missing fundamental or remote from it. In the former case, the two standard stimuli were matched in pitch. However, this perceptual relationship did not appear to favor the transfer of learning. Therefore, the results indicated that pitch discrimination learning is, at least to some extent, timbre-specific, and cannot be viewed as a reduction of an internal noise which would affect directly the output of a neural device extracting pitch from both pure tones and complex tones including low-rank harmonics.  相似文献   

3.
Perceptual learning in frequency discrimination   总被引:3,自引:0,他引:3  
This study was concerned with the effects of training on the frequency discrimination ability of human listeners. Frequency discrimination at 200 Hz was tested before and after training. Four groups of listeners received training in four different frequency regions, 200, 360, 2500, and 6000 Hz. It was found that training at 200, 360, and 2500 Hz all provided comparable improvement in discrimination performance at 200 Hz whereas training at 6000 Hz provided less improvement. This result is consistent with the idea that frequency discrimination and pitch perception are mediated by different processes at high (greater than 5000 Hz) and low (less than 5000 Hz) frequencies.  相似文献   

4.
Experiment 1 measured rate discrimination of electric pulse trains by bilateral cochlear implant (CI) users, for standard rates of 100, 200, and 300 pps. In the diotic condition the pulses were presented simultaneously to the two ears. Consistent with previous results with unilateral stimulation, performance deteriorated at higher standard rates. In the signal interval of each trial in the dichotic condition, the standard rate was presented to the left ear and the (higher) signal rate was presented to the right ear; the non-signal intervals were the same as in the diotic condition. Performance in the dichotic condition was better for some listeners than in the diotic condition for standard rates of 100 and 200 pps, but not at 300 pps. It is concluded that the deterioration in rate discrimination observed for CI users at high rates cannot be alleviated by the introduction of a binaural cue, and is unlikely to be limited solely by central pitch processes. Experiment 2 performed an analogous experiment in which 300-pps acoustic pulse trains were bandpass filtered (3900-5400 Hz) and presented in a noise background to normal-hearing listeners. Unlike the results of experiment 1, performance was superior in the dichotic than in the diotic condition.  相似文献   

5.
Experiments were performed to determine under what conditions quasi-frequency-modulated (QFM) noise and random-sideband noise are suitable comparisons for AM noise in measuring a temporal modulation transfer function (TMTF). Thresholds were measured for discrimination of QFM from random-sideband noise and AM from QFM noise as a function of sideband separation. In the first experiment, the upper spectral edge of the noise stimuli was at 2400 Hz and the bandwidth was 1600 Hz. For sideband separations up to 256 Hz, at threshold sideband levels for discriminating AM from QFM noise, QFM was indiscriminable from random-sideband noise. For the largest sideband separation used (512 Hz), listeners may have used within-stimulus envelope correlation in the QFM noise to discriminate it from the random-sideband noise. Results when stimulus bandwidth was varied suggest that listeners were able to use this cue when the carrier was wider than a critical band, and the sideband separation approached the carrier bandwidth. Within-stimulus envelope correlation was also present in AM noise, and thus QFM noise was a suitable comparison because it made this cue unusable and forced listeners to use across-stimulus envelope differences. When the carrier bandwidth was less than a critical band or was wideband, QFM noise and random-sideband noise were equally suitable comparisons for AM noise. When discrimination thresholds for QFM and random-sideband noise were converted to modulation depth and modulation frequency, they were nearly identical to those for discrimination of AM from QFM noise, suggesting that listeners were using amplitude modulation cues in both cases.  相似文献   

6.
Iterated rippled noise (IRN) is generated by a cascade of delay and add (the gain after the delay is 1.0) or delay and subtract (the gain is -1.0) operations. The delay and add/subtract operations impart a spectral ripple and a temporal regularity to the noise. The waveform fine structure is different in these two conditions, but the envelope can be extremely similar. Four experiments were used to determine conditions in which the processing of IRN stimuli might be mediated by the waveform fine structure or by the envelope. In experiments 1 and 3 listeners discriminated among three stimuli in a single-interval task: IRN stimuli generated with the delay and add operations (g = 1.0), IRN stimuli generated using the delay and subtract operations (g = -1.0), and a flat-spectrum noise stimulus. In experiment 2 the listeners were presented two IRN stimuli that differed in delay (4 vs 6 ms) and a flat-spectrum noise stimulus that was not an IRN stimulus. In experiments 1 and 2 both the envelope and waveform fine structure contained the spectral ripple and temporal regularity. In experiment 3 only the envelope had this spectral and temporal structure. In all experiments discrimination was determined as a function of high-pass filtering the stimuli, and listeners could discriminate between the two IRN stimuli up to frequency regions as high as 4000-6000 Hz. Listeners could discriminate the IRN stimuli from the flat-spectrum noise stimulus at even higher frequencies (as high as 8000 Hz), but these discriminations did not appear to depend on the pitch of the IRN stimuli. A control experiment (fourth experiment) suggests that IRN discriminations in high-frequency regions are probably not due entirely to low-frequency nonlinear distortion products. The results of the paper imply that pitch processing of IRN stimuli is based on the waveform fine structure.  相似文献   

7.
Two experiments investigated the ability of 17 school-aged children to process purely temporal and spectro-temporal cues that signal changes in pitch. Percentage correct was measured for the discrimination of sinusoidal amplitude modulation rate (AMR) of broadband noise in experiment 1 and for the discrimination of fundamental frequency (F0) of broadband sine-phase harmonic complexes in experiment 2. The reference AMR was 100 Hz as was the reference F0. A child-friendly interface helped listeners to remain attentive to the task. Data were fitted using a maximum-likelihood technique that extracted threshold, slope, and lapse rate. All thresholds were subsequently standardized to a common d' value equal to 0.77. There were relatively large individual differences across listeners: eight had relatively adult-like thresholds in both tasks and nine had higher thresholds. However, these individual differences did not vary systematically with age, over the span of 6-16 yr. Thresholds were correlated across the two tasks and were about nine times finer for F0 discrimination than for AMR discrimination as has been previously observed in adults.  相似文献   

8.
When listeners hear a target signal in the presence of competing sounds, they are quite good at extracting information at instances when the local signal-to-noise ratio of the target is most favorable. Previous research suggests that listeners can easily understand a periodically interrupted target when it is interleaved with noise. It is not clear if this ability extends to the case where an interrupted target is alternated with a speech masker rather than noise. This study examined speech intelligibility in the presence of noise or speech maskers, which were either continuous or interrupted at one of six rates between 4 and 128 Hz. Results indicated that with noise maskers, listeners performed significantly better with interrupted, rather than continuous maskers. With speech maskers, however, performance was better in continuous, rather than interrupted masker conditions. Presumably the listeners used continuity as a cue to distinguish the continuous masker from the interrupted target. Intelligibility in the interrupted masker condition was improved by introducing a pitch difference between the target and speech masker. These results highlight the role that target-masker differences in continuity and pitch play in the segregation of competing speech signals.  相似文献   

9.
Two experiments were conducted to assess the effect of the rate of sinusoidal amplitude modulation (SAM) of a masker tone on detection of SAM of a probe tone (experiment 1) or on SAM-rate discrimination for the probe tone (experiment 2). When modulated at the same rate as the probe, the masker interfered with both the detection of probe modulation and the discrimination of the rate of probe modulation. The interference was obtained when the masker was either higher or lower in frequency than the probe (the probe and masker were separated by 2 oct). The amount of interference in detecting probe modulation (experiment 1) decreased as the common base rate of modulation was increased from 5 to 200 Hz. For rate discrimination (experiment 2), the amount of interference remained approximately the same for base rates of 2-40 Hz, the range over which rate discrimination was measured. In both experiments, the amount of interference was reduced when the masker was modulated at a different rate than the probe.  相似文献   

10.
This study tested the relationship between frequency selectivity and the minimum spacing between harmonics necessary for accurate fo discrimination. Fundamental frequency difference limens (fo DLs) were measured for ten listeners with moderate sensorineural hearing loss (SNHL) and three normal-hearing listeners for sine- and random-phase harmonic complexes, bandpass filtered between 1500 and 3500 Hz, with fo's ranging from 75 to 500 Hz (or higher). All listeners showed a transition between small (good) fo DLs at high fo's and large (poor) fo DLs at low fo's, although the fo at which this transition occurred (fo,tr) varied across listeners. Three measures thought to reflect frequency selectivity were significantly correlated to both the fo,tr and the minimum fo DL achieved at high fo's: (1) the maximum fo for which fo DLs were phase dependent, (2) the maximum modulation frequency for which amplitude modulation and quasi-frequency modulation were discriminable, and (3) the equivalent rectangular bandwidth of the auditory filter, estimated using the notched-noise method. These results provide evidence of a relationship between fo discrimination performance and frequency selectivity in listeners with SNHL, supporting "spectral" and "spectro-temporal" theories of pitch perception that rely on sharp tuning in the auditory periphery to accurately extract fo information.  相似文献   

11.
Echolocating dolphins extract object feature information from the acoustic parameters of echoes. To gain insight into which acoustic parameters are important for object discrimination, human listeners were presented with echoes from objects used in two discrimination tasks performed by dolphins: Hollow cylinders with varying wall thicknesses (+/-0.2, 0.3, 0.4, and 0.8 mm), and spheres made of different materials (steel, aluminum, brass, nylon, and glass). The human listeners performed as well or better than the dolphins at the task of discriminating between the standard object and the comparison objects on both the cylinders (humans=97.1%; dolphin=82.3%) and the spheres (humans= 86.6%; dolphin= 88.7%). The human listeners reported using primarily pitch and duration to discriminate among the cylinders, and pitch and timbre to discriminate among the spheres. Dolphins may use some of the same echo features as the humans to discriminate among objects varying in material or structure. Human listening studies can be used to quickly identify salient combinations of echo features that permit object discrimination, which can then be used to generate hypotheses that can be tested using dolphins as subjects.  相似文献   

12.
Lateralization of narrow bands of noise was investigated while varying interaural temporal disparity (ITD), center frequency, and bandwidth, utilizing an acoustic pointing task. Stimuli were narrow bands of noise centered at octave intervals between 500 Hz and 4 kHz with bandwidths ranging from 50-400 Hz. In a second experiment, lateralization for bands of noise and sinusoidally amplitude-modulated (SAM) tones, whose spectral content was constrained to be no lower than 3.8 kHz, was assessed. Overall, relatively large extents of laterality were obtained from all four listeners for ITDs of low-frequency bands of noise. Increasing the bandwidth of these noises did not yield consistent changes in the extent of laterality across ITDs and listeners. Most targets centered at high frequencies were lateralized near the midline. However, three of the four listeners did exhibit rather large displacements of the intracranial image when the bandwidth of the high-frequency noises was 400 Hz or greater. Interestingly, ITDs within high-frequency SAM tones were relatively ineffective. Thus, it appears that ITDs of relatively wide-band, high-frequency stimuli can mediate rather substantial extents of laterality. However, these effects are highly listener-dependent.  相似文献   

13.
Two experiments investigated pitch perception for stimuli where the place of excitation was held constant. Experiment 1 used pulse trains in which the interpulse interval alternated between 4 and 6 ms. In experiment 1a these "4-6" pulse trains were bandpass filtered between 3900 and 5300 Hz and presented acoustically against a noise background to normal listeners. The rate of an isochronous pulse train (in which all the interpulse intervals were equal) was adjusted so that its pitch matched that of the "4-6" stimulus. The pitch matches were distributed unimodally, had a mean of 5.7 ms, and never corresponded to either 4 or to 10 ms (the period of the stimulus). In experiment 1b the pulse trains were presented both acoustically to normal listeners and electrically to users of the LAURA cochlear implant, via a single channel of their device. A forced-choice procedure was used to measure psychometric functions, in which subjects judged whether the 4-6 stimulus was higher or lower in pitch than isochronous pulse trains having periods of 3, 4, 5, 6, or 7 ms. For both groups of listeners, the point of subjective equality corresponded to a period of 5.6 to 5.7 ms. Experiment 1c confirmed that these psychometric functions were monotonic over the range 4-12 ms. In experiment 2, normal listeners adjusted the rate of an isochronous filtered pulse train to match the pitch of mixtures of pulse trains having rates of F1 and F2 Hz, passed through the same bandpass filter (3900-5400 Hz). The ratio F2/F1 was 1.29 and F1 was either 70, 92, 109, or 124 Hz. Matches were always close to F2 Hz. It is concluded that the results of both experiments are inconsistent with models of pitch perception which rely on higher-order intervals. Together with those of other published data on purely temporal pitch perception, the data are consistent with a model in which only first-order interpulse intervals contribute to pitch, and in which, over the range 0-12 ms, longer intervals receive higher weights than short intervals.  相似文献   

14.
Temporal discrimination was measured using a gap discrimination paradigm for three groups of listeners with normal hearing: (1) ages 18-30, (2) ages 40-52, and (3) ages 62-74 years. Normal hearing was defined as pure-tone thresholds < or = 25 dB HL from 250 to 6000 Hz and < or = 30 dB HL at 8000 Hz. Silent gaps were placed between 1/4-octave bands of noise centered at one of six frequencies. The noise band markers were paired so that the center frequency of the leading marker was fixed at 2000 Hz, and the center frequency of the trailing marker varied randomly across experimental runs. Gap duration discrimination was significantly poorer for older listeners than for young and middle-aged listeners, and the performance of the young and middle-aged listeners did not differ significantly. Age group differences were more apparent for the more frequency-disparate stimuli (2000-Hz leading marker followed by a 500-Hz trailing marker) than for the fixed-frequency stimuli (2000-Hz lead and 2000-Hz trail). The gap duration difference limens of the older listeners increased more rapidly with frequency disparity than those of the other listeners. Because age effects were more apparent for the more frequency-disparate conditions, and gap discrimination was not affected by differences in hearing sensitivity among listeners, it is suggested that gap discrimination depends upon temporal mechanisms that deteriorate with age and stimulus complexity but are unaffected by hearing loss.  相似文献   

15.
The detection, loudness, and discrimination performances of subjects with normal hearing were assessed using 3 five-component tonal complexes (1020-1100 Hz) with crest factors of 1.8, 2.6, and 3.2. The 3 five-component tonal complexes were: (1) equally detectable in broadband noise when presented at equal rms amplitude; (2) perceived as equally loud when presented at essentially equal rms amplitude; and (3) discriminable from one another when presented at equal loudness. The present data indicate that listeners can make discriminations on the basis of amplitude variations.  相似文献   

16.
This study compared the ability of 5 listeners with normal hearing and 12 listeners with moderate to moderately severe sensorineural hearing loss to discriminate complementary two-component complex tones (TCCTs). The TCCTs consist of two pure tone components (f1 and f2) which differ in frequency by delta f (Hz) and in level by delta L (dB). In one of the complementary tones, the level of the component f1 is greater than the level of component f2 by the increment delta L; in the other tone, the level of component f2 exceeds that of component f1 by delta L. Five stimulus conditions were included in this study: fc = 1000 Hz, delta L = 3 dB; fc = 1000 Hz, delta L = 1 dB; fc = 2000 Hz, delta L = 3 dB; fc = 2000 Hz, delta L = 1 dB; and fc = 4000 Hz, delta L = 3 dB. In listeners with normal hearing, discrimination of complementary TCCTs (with a fixed delta L and a variable delta f) is described by an inverted U-shaped psychometric function in which discrimination improves as delta f increases, is (nearly) perfect for a range of delta f's, and then decreases again as delta f increases. In contrast, group psychometric functions for listeners with hearing loss are shifted to the right such that above chance performance occurs at larger values of delta f than in listeners with normal hearing. Group psychometric functions for listeners with hearing loss do not show a decrease in performance at the largest values of delta f included in this study. Decreased TCCT discrimination is evident when listeners with hearing loss are compared to listeners with normal hearing at both equal SPLs and at equal sensation levels. In both groups of listeners, TCCT discrimination is significantly worse at high center frequencies. Results from normal-hearing listeners are generally consistent with a temporal model of TCCT discrimination. Listeners with hearing loss may have deficits in using phase locking in the TCCT discrimination task and so may rely more on place cues in TCCT discrimination.  相似文献   

17.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

18.
The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect was a 6-8 dB increase in thresholds with articulation rate for both configurations. These results suggest that higher modulation frequencies in masked signals cannot be temporally resolved by the binaural system, but that the useful modulation frequencies in speech are sufficiently low (<5 Hz) that they are invulnerable to the effects of binaural sluggishness, even at elevated articulation rates.  相似文献   

19.
It has long been recognized that listeners are sensitive to interaural temporal disparities (ITDs) of low-frequency (i.e., below 1600 Hz) stimuli. Within the last three decades, it has often been demonstrated that listeners are also sensitive to ITDs within the envelope of high-frequency, complex stimuli. Because these studies, for the most part, employed discrimination tasks, few data exist concerning the extent of laterality produced by ITDs as a function of the spectral locus of the stimulus. To this end, we employed an acoustic "pointing" task in which listeners varied the interaural intensity difference of a 500-Hz narrow-band noise (the pointer) so that it matched the intracranial position of a second, experimenter-controlled stimulus (the target). Targets were sinusoidally amplitude-modulated tones centered on 500 Hz, 1, 2, 3, or 4 kHz and modulated at rates ranging from 50 to 800 Hz. Targets were presented with either the entire waveform delayed or with only the envelope delayed. Our results suggest that: (1) for low-frequency targets, lateralization is influenced by ITDs in the envelope but is dominated by ITDs in the fine structure; (2) for high-frequency targets, envelope-based delays produce displacements of the acoustic images which are affected greatly by the rate of modulation; rather large extents of laterality could be produced with high rates of modulation; these data are consistent with those obtained previously in discrimination experiments; (3) for low rates of modulation (e.g., 100 Hz), delays of the entire waveform (both envelope and fine structure) produce much greater displacements of the acoustic image for low-frequency than for high-frequency targets (where fine-structure-based cues are not utilizable); (4) there appear to be no consistent relations among extent of laterality, rate of modulation, and the frequency of the carrier within and across listeners.  相似文献   

20.
Several studies have shown that extensive training with synthetic speech sounds can result in substantial improvements in listeners' perception of intraphonemic differences. The purpose of the present study was to investigate the effects of listening experience on the perception of intraphonemic differences in the absence of specific training with the synthetic speech sounds being tested. Phonetically trained listeners, musicians, and untrained listeners were tested on a two-choice identification task, a three-choice identification task, and an ABX discrimination task using a synthetic [bi]-[phi] continuum and a synthetic [wei]-[rei] continuum. The three-choice identification task included the identification of stimuli with an "indefinite" or "ambiguous" quality in addition to clear instances of the opposing phonetic categories. Results included: (1) All three subject groups showed some ability to identify ambiguous stimuli; (2) phonetically trained listeners were better at identifying ambiguous stimuli than musicians and untrained listeners; (3) phonetically trained listeners performed better on the discrimination task than musicians and untrained listeners; (4) musicians and untrained listeners did not differ on any of the listening tasks; and (5) participation by the inexperienced listeners in a 10-week introductory phonetics course did not result in improvements in either the three-choice identification task or the discrimination task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号