首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and properties of biphenyl‐ and p‐terphenyl‐fused o‐carboranes are described. Aryl rings in the biphenyl and p‐terphenyl skeletons are highly coplanar because of the presence of the o‐carborane unit. o‐Carborane exhibits an electron‐withdrawing character via the inductive effect, resulting in a decrease in both the HOMO and LUMO levels of oligophenyls without causing electronic perturbation.  相似文献   

2.
A nickel‐catalyzed arylation at the carbon center of o‐carborane cages has been developed, thus leading to the preparation of a series of 1‐aryl‐o‐carboranes and 1,2‐diaryl‐o‐carboranes in high yields upon isolation. This method represents the first example of transition metal catalyzed C,C′‐diarylation by cross‐coupling reactions of o‐carboranyl with aryl iodides.  相似文献   

3.
《中国化学》2018,36(4):273-279
o‐Carboryne (1,2‐dehydro‐o‐carborane) is a very useful synthon for the synthesis of a variety of carborane‐functionalized molecules. Diels‐Alder reaction of o‐carboryne with furans gave a series of carborane‐fused oxanorbornenes in moderate to high yields using 1‐OTf‐1,2‐C2B10H11 as carboryne precursor. The resultant cycloadducts can undergo hydrogenation, cyclic oxidation, bromination, [4 + 2]/[2 + 2] cycloaddition and nucleophilic ring opening reaction to afford a variety of highly functionalized carboranes that may find applications as useful basic units in medicine and materials science.  相似文献   

4.
1,3‐Dehydro‐o‐carborane is a useful synthon for selective cage boron functionalization of o‐carboranes. It reacts readily with alkenes or alkynes to give a variety of cage B(3)‐alkenyl/allenyl o‐carboranes by ene reactions in very high yields and excellent regioselectivity. This can be ascribed to the highly polarized cage C?B multiple bond, which lowers the activation barriers of the ene reaction.  相似文献   

5.
A visible‐light‐mediated in situ generation of a boron‐centered carboranyl radical (o‐C2B10H11 . ) has been described. With eosin Y as a photoredox catalyst, 3‐diazonium‐o‐carborane tetrafluoroborate [3‐N2o‐C2B10H11][BF4] was converted into the corresponding boron‐centered carboranyl radical intermediate, which can undergo efficient electrophilic substitution reaction with a wide range of (hetero)arenes. This general and simple procedure provides a metal‐free alternative for the synthesis of 3‐(hetero)arylated‐o‐carboranes.  相似文献   

6.
Palladium‐catalyzed intermolecular coupling of o‐carborane with aromatics by direct cage B?H bond activation has been achieved, leading to the synthesis of a series of cage B(4,5)‐diarylated‐o‐carboranes in high yields with excellent regioselectivity. Traceless directing group ‐COOH plays a crucial role for site‐ and di‐selectivity of such intermolecular coupling reaction. A PdII–PdIV–PdII catalytic cycle is proposed to be responsible for the stepwise arylation.  相似文献   

7.
Like the importance of benzyne, witnessed in modern arene chemistry for decades, 1,2‐dehydro‐o‐carborane (o‐carboryne), a three‐dimensional relative of benzyne, has been used as a synthon for generating a wide range of cage, carbon‐functionalized carboranes over the past 20 years. However, the selective B functionalization of the cage still represents a challenging task. Disclosed herein is the first example of 1,3‐dehydro‐o‐carborane featuring a cage C? B bond having multiple bonding characters, and is successfully generated by treatment of 3‐diazonium‐o‐carborane tetrafluoroborate with non‐nucleophilic bases. This presents a new methodology for simultaneous functionalization of both cage carbon and boron vertices.  相似文献   

8.
A palladium‐catalyzed highly selective 3,4‐bifunctionalization of 3‐I‐o‐carborane has been developed, leading to the preparation of 3‐alkenyl‐4‐R‐o‐carboranes (R=alkyl, alkynyl, aryl, allyl, CN, and amido) in high to excellent yields. This protocol combines the sequential activation of cage B(3)?I and B(4)?H bonds by Pd migration from exo‐alkenyl sp2 C to cage B(4), which is driven by thermodynamic force. This represents a brand‐new strategy for selective bifunctionalization of carboranes with two different substituents.  相似文献   

9.
Luminescent materials consisting of boron clusters, such as carboranes, have attracted immense interest in recent years. In this study, luminescent organic–inorganic conjugated systems based on o‐carboranes directly bonded to electron‐donating and electron‐accepting π‐conjugated units were elaborated as novel optoelectronic materials. These o‐carborane derivatives simultaneously possessed aggregation‐induced emission (AIE) and thermally activated delayed fluorescence (TADF) capabilities, and showed strong yellow‐to‐red emissions with high photoluminescence quantum efficiencies of up to 97 % in their aggregated states or in solid neat films. Organic light‐emitting diodes utilizing these o‐carborane derivatives as a nondoped emission layer exhibited maximum external electroluminescence quantum efficiencies as high as 11 %, originating from TADF.  相似文献   

10.
Direct nucleophilic substitution reaction of cage B−H bonds of o ‐carboranes by Grignard reagents in the absence of any transition metals has been achieved for the first time, and leads to the regioselective synthesis of a series of 4‐alkyl‐1,2‐diaryl‐o ‐carboranes in very high yields. The presence of two electron‐withdrawing aryl groups on the cage carbon atoms is crucial to realizing the reaction. The regioselectivity is controlled by both electronic and steric factors. This work represents a new strategy for the development of methods for carborane functionalization.  相似文献   

11.
The incorporation of iodine atoms onto the boron vertices of the o‐carborane framework causes, according to spectroscopic data, a uniform increase in the acidic character of the Cc? H (Cc= cluster carbon) vertices, whereas the incorporation of methyl groups onto the boron vertices of the o‐carborane framework reduces their acidity. Methyl groups when attached to boron are electron‐withdrawing in boron clusters, whereas iodine atoms bonded to boron act as electron donors. This has been proven on B‐methyl and B‐iodinated o‐carboranes with NMR spectroscopy measurements and DFT calculations of natural bond orbital (NBO) charges, which show a cumulative buildup of positive cluster‐only total charge (CTC) on B‐methyl o‐carboranes and a cumulative buildup of negative cluster‐only total charge for B‐iodinated o‐carboranes.  相似文献   

12.
The synthesis of a highly twisted chrysene derivative incorporating two electron deficient o‐carboranyl groups is reported. The molecule exhibits a complex, excitation‐dependent photoluminescence, including aggregation‐induced emission (AIE) with good quantum efficiency and an exceptionally long singlet excited state lifetime. Through a combination of detailed optical studies and theoretical calculations, the excited state species are identified, including an unusual excimer induced by the presence of o‐carborane. This is the first time that o‐carborane has been shown to induce excimer formation ab initio, as well as the first observation of excimer emission by a chrysene‐based small molecule in solution. Bis‐o‐carboranyl chrysene is thus an initial member of a new family of o‐carboranyl phenacenes exhibiting a novel architecture for highly‐efficient multi‐luminescent fluorophores.  相似文献   

13.
The synthesis of a series of 1,2‐diamino‐o‐carboranes ( 1 – 4 ) is reported. The molecular structures of these diamino‐o‐carboranes are remarkable as the inner‐cluster C?C bonds are all ultra‐long (162.7–193.1 pm) and vary substantially with small variations in the substituents. The results of quantum mechanical investigations suggest that the origin of the bond elongation is significant in‐plane negative hyperconjugation of lone pairs of the nitrogen substituents with the σ* orbitals of the C?C bonds in o‐carboranes.  相似文献   

14.
A rhodium‐catalyzed hydroxylation of a cage B4?H bond in o‐carboranes with either O2 or air as the oxygen source is described, and serves as a new methodology for the regioselective generation of a series of 4‐OH‐o‐carboranes in a one‐pot process. The use of either O2 or air as both the oxidant and the oxygen source makes this protocol very environmentally friendly and practical.  相似文献   

15.
The synthesis of novel luminescent polymer containing p‐phenylene‐ethynylene and 9,12‐linked o‐carborane units alternately in the main chain is reported. The obtained polymer exhibits intense blue photoluminescence, providing the first insights into the optical properties of a 9,12‐disubstituted o‐carborane dye.  π‐Conjugated substituent at 9 and/or 12‐positions in o‐carborane is electrically independent, and both the HOMO and the LUMO levels slightly increase, whereas LUMO of the π‐conjugated substituent at 1 and/or 2‐positions in o‐carborane decrease.  Thus, it is deduced that polymers consisting of the 9,12‐linked o‐carborane unit are able to be applied as light‐emitting materials.

  相似文献   


16.
《化学:亚洲杂志》2017,12(16):2134-2138
Aryl‐substituted o ‐carboranes have shown highly efficient solid‐state emission in previous studies. To demonstrate color tuning of the solid‐state emission in an aryl‐o ‐carborane‐based system, bis‐o ‐carborane‐substituted oligoacenes were synthesized and their properties were systematically investigated. Optical and electrochemical measurements revealed efficient decreases in energy band gaps and lowest unoccupied molecular orbital (LUMO) levels by adding a number of fused benzene rings for the extension of π‐conjugation. As a consequence, bright solid‐state emission was observed in the region from blue to near infrared (NIR). Furthermore, various useful features were obtained from the modified o ‐carboranes as an optical material. The naphthalene derivatives exhibited aggregation‐induced emission (AIE) and almost 100 % quantum efficiency in the crystalline state. Furthermore, it was shown that the tetracene derivative with NIR‐emissive properties had high durability toward photo‐bleaching under UV irradiation.  相似文献   

17.
Electrochemical behaviour of 12 icosahedral carboranes – ortho‐, meta‐ and para‐carborane with different exo‐skeletal substituents was investigated. The study was done using phosphate buffers, in some cases with 20 % and 30 % dimethyl sulfoxide (DMSO) addition to increase the solubility of studied compounds. Commercial glassy carbon electrode or home‐made screen printed electrodes were used. Distinct electrochemical responses were observed only for the ortho‐carborane and its exo‐skeletal derivatives. The study of different exo‐skeletal substituents on the electrochemical behaviour of the carboranes is crucial for the intended use of these compounds as electrochemical labels of biomolecules.  相似文献   

18.
While carboranes with 2 n+2 and 2 n+4 (n=number of skeletal atoms) skeletal electrons (SE) are widely known, little has been reported on carboranes with odd SE numbers. Electrochemical measurements on two‐cage assemblies, where two C‐phenyl‐ortho‐carboranyl groups are linked by a para‐phenylene or a para‐tetrafluorophenylene bridge, revealed two well separated and reversible two‐electron reduction waves indicating formation of stable dianions and tetraanions. The salts of the dianions were isolated by reduction with sodium metal and their unusual structures were determined by X‐ray crystallography. The diamagnetic dianions contain two 2 n+3 SE clusters where each cluster has a notably long carborane C–carborane C distance of ca 2.4 Å. The π conjugation within the phenylene bridge plays an important role in the stabilization of these carboranes with odd SE counts.  相似文献   

19.
Two phenyl‐substituted carboranes, 3‐phenyl‐1,2‐dicarba‐closo‐dodecaborane(12), C8H16B10, (I), and 1‐phenyl‐1,7‐dicarba‐closo‐dodecaborane(12), C8H16B10, (II), were found to be isostructural. Comparison of the bond angles at the ipso‐C atoms of the phenyl substituent for (I) and (II) [117.71 (3) and 118.45 (10)°, respectively] indicates that electron donation of the carborane cage for B‐ and C‐substituted carboranes is different.  相似文献   

20.
Two sets of o‐carborane derivatives incorporating fluorene and anthracene fragments as fluorophore groups have been successfully synthesized and characterized, and their photophysical properties studied. The first set, comprising fluorene‐containing carboranes 6 – 9 , was prepared by catalyzed hydrosilylation reactions of ethynylfluorene with appropriate carboranylsilanes. The compound 1‐[(9,9‐dioctyl‐fluorene‐2‐yl)ethynyl]carborane ( 11 ) was synthesized by the reaction of 9,9‐dioctyl‐2‐ethynylfluorene and decaborane (B10H14). Furthermore, reactions of the lithium salt of 11 with 1 equivalent of 4‐(chloromethyl)styrene or 9‐(chloromethyl)anthracene yielded compounds 12 and 13 . Members of the second set of derivatives, comprising anthracene‐containing carboranes, were synthesized by reactions of monolithium or dilithium salts of 1‐Me‐1,2‐C2B10H11, 1‐Ph‐1,2‐C2B10H11, and 1,2‐C2B10H12 with 1 or 2 equivalents of 9‐(chloromethyl)anthracene, respectively, to produce compounds 14 – 16 . In addition, 2 equivalents of the monolithium salts of 1‐Me‐1,2‐C2B10H11 (Me‐o‐carborane) and 1‐Ph‐1,2‐C2B10H11 (Ph‐o‐carborane) were reacted with 9,10‐bis(chloromethyl)anthracene to produce compounds 17 and 18 , respectively. Fluorene derivatives 6 – 9 exhibit moderate fluorescence quantum yields (32–44 %), whereas 11 – 13 , in which the fluorophore is bonded to the Ccluster (Cc), show very low emission intensity (6 %) or complete fluorescence quenching. The anthracenyl derivatives containing the Me‐o‐carborane moiety exhibit notably high fluorescence emissions, with ?F=82 and 94 %, whereas their Ph‐o‐carborane analogues are not fluorescent at all. For these compounds, we have observed a correlation between the Cc?Cc bond length and the fluorescence intensity in CH2Cl2 solution, comparable to that observed for previously reported styrene‐containing carboranes. Thus, our hypothesis is that for systems of this type the fluorescence may be tuned and even predicted by changing the substituent on the adjacent Cc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号