首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach for the synthesis of macrocyclic bis‐β‐lactams based on the Cu‐catalyzed alkyne–azide cycloaddition (CuAAC) is reported. The procedure is general and allows access to a full range of diastereomerically or enantiomerically pure macrocyclic cavities in good yields. The incorporation of chiral oxazolidinone fragments at C3 in the β‐lactam rings allows the total enantiocontrol of the process.  相似文献   

2.
β‐Lactams with contiguous tetra‐ and trisubstituted carbon centers were prepared in a highly enantioselective manner through 4‐exo‐trig cyclization of axially chiral enolates generated from readily available α‐amino acids. Use of a weak base (metal carbonate) in a protic solvent (EtOH) is the key to the smooth production of β‐lactams. Use of the weak base is expected to generate the axially chiral enolates in a very low concentration, which undergo intramolecular conjugate addition without suffering intermolecular side reactions. Highly strained β‐lactam enolates thus formed through reversible intramolecular conjugate addition (4‐exo‐trig cyclization) of axially chiral enolates undergo prompt protonation by EtOH in the reaction media (not during the work‐up procedure) to give β‐lactams in up to 97 % ee.  相似文献   

3.
In an approach to the biologically important 6‐azabicyclo[3.2.1]octane ring system, the scope of the tandem 4‐exo‐trig carbamoyl radical cyclization—dithiocarbamate group transfer reaction to ring‐fused β‐lactams is evaluated. β‐Lactams fused to five‐, six‐, and seven‐membered rings are prepared in good to excellent yield, and with moderate to complete control at the newly formed dithiocarbamate stereocentre. No cyclization is observed with an additional methyl substituent on the terminus of the double bond. Elimination of the dithiocarbamate group gives α,β‐ or β,γ‐unsaturated lactams depending on both the methodology employed (base‐mediated or thermal) and the nature of the carbocycle fused to the β‐lactam. Fused β‐lactam diols, obtained from catalytic OsO4‐mediated dihydroxylation of α,β‐unsaturated β‐lactams, undergo semipinacol rearrangement via the corresponding cyclic sulfite or phosphorane to give keto‐bridged bicyclic amides by exclusive N‐acyl group migration. A monocyclic β‐lactam diol undergoes Appel reaction at a primary alcohol in preference to semipinacol rearrangement. Preliminary investigations into the chemo‐ and stereoselective manipulation of the two carbonyl groups present in a representative 7,8‐dioxo‐6‐azabicyclo[3.2.1]octane rearrangement product are also reported.  相似文献   

4.
As potential inhibitors of penicillin‐binding proteins (PBPs), we focused our research on the synthesis of non‐traditional 1,3‐bridged β‐lactams embedded into macrocycles. We synthesized 12‐ to 22‐membered bicyclic β‐lactams by the ring‐closing metathesis (RCM) of bis‐ω‐alkenyl‐3(S)‐aminoazetidinone precursors. The reactivity of 1,3‐bridged β‐lactams was estimated by the determination of the energy barrier of a concerted nucleophilic attack and lactam ring‐opening process by using ab initio calculations. The results predicted that 16‐membered cycles should be more reactive. Biochemical evaluations against R39 DD‐peptidase and two resistant PBPs, namely, PBP2a and PBP5, revealed the inhibition effect of compound 4d , which featured a 16‐membered bridge and the N‐tert‐butyloxycarbonyl chain at the C3 position of the β‐lactam ring. Surprisingly, the corresponding bicycle, 12d , with the PhOCH2CO side chain at C3 was inactive. Reaction models of the R39 active site gave a new insight into the geometric requirements of the conformation of potential ligands and their steric hindrance; this could help in the design of new compounds.  相似文献   

5.
The known glucaro‐1,5‐lactam 8 , its diastereoisomers 9 – 11 , and the tetrahydrotetrazolopyridine‐5‐carboxylates 12 – 14 were synthesised as potential inhibitors of β‐D ‐glucuronidases and α‐L ‐iduronidases. The known 2,3‐di‐O‐benzyl‐4,6‐O‐benzylidene‐D ‐galactose ( 16 ) was transformed into the D ‐galactaro‐ and L ‐altraro‐1,5‐lactams 9 and 11 via the galactono‐1,5‐lactam 21 in twelve steps and in an overall yield of 13 and 2%, respectively. A divergent strategy, starting from the known tartaric anhydride 41 , led to the D ‐glucaro‐1,5‐lactam 8 , D ‐galactaro‐1,5‐lactam 9 , L ‐idaro‐1,5‐lactam 10 , and L ‐altraro‐1,5‐lactam 11 in ten steps and in an overall yield of 4–20%. The anhydride 41 was transformed into the L ‐threuronate 46 . Olefination of 46 to the (E)‐ or (Z)‐alkene 47 or 48 followed by reagent‐ or substrate‐controlled dihydroxylation, lactonisation, azidation, reduction, and deprotection led to the lactams 8 – 11 . The tetrazoles 12 – 14 were prepared in an overall yield of 61–81% from the lactams 54, 28 , and 67 , respectively, by treatment with Tf2O and NaN3, followed by saponification, esterification, and hydrogenolysis. The lactams 8 – 11 and 40 and the tetrazoles 12 – 14 are medium‐to‐strong inhibitors of β‐D ‐glucuronidase from bovine liver. Only the L ‐ido‐configured lactam 10 (Ki = 94 μM ) and the tetrazole 14 (Ki = 1.3 mM ) inhibit human α‐L ‐iduronidase.  相似文献   

6.
Owing to their broad spectrum of biological activities and low toxicity, β‐lactams are attractive lead structures for the design of novel molecular probes. However, the synthesis of positron emission tomography (PET)‐isotope‐labelled β‐lactams has not yet been reported. Herein, we describe the simple preparation of radiofluorinated β‐lactams by using the fast Kinugasa reaction between 18F‐labelled nitrone [18F]‐ 1 and alkynes of different reactivity. Additionally, 18F‐labelled fused β‐lactams were obtained through the reaction of a cyclic nitrone 7 with radiofluorinated alkynes [18F]‐ 6 a , b . Radiochemical yields of the Kinugasa reaction products could be significantly increased by the use of different CuI ligands, which additionally allowed a reduction in the amount of precursor and/or reaction time. Model radiofluorinated β‐lactam‐peptide and protein conjugates ([18F]‐ 10 and 18F‐labelled BSA conjugate) were efficiently obtained in high yield under mild conditions (aq. MeCN, ambient temperature) within a short reaction time, demonstrating the suitability of the developed method for radiolabelling of sensitive molecules such as biopolymers.  相似文献   

7.
Resistance to β‐lactam antibiotics mediated by metallo‐β‐lactamases (MBLs) is a growing problem. We describe the use of protein‐observe 19F‐NMR (PrOF NMR) to study the dynamics of the São Paulo MBL (SPM‐1) from β‐lactam‐resistant Pseudomonas aeruginosa . Cysteinyl variants on the α3 and L3 regions, which flank the di‐ZnII active site, were selectively 19F‐labeled using 3‐bromo‐1,1,1‐trifluoroacetone. The PrOF NMR results reveal roles for the mobile α3 and L3 regions in the binding of both inhibitors and hydrolyzed β‐lactam products to SPM‐1. These results have implications for the mechanisms and inhibition of MBLs by β‐lactams and non‐β‐lactams and illustrate the utility of PrOF NMR for efficiently analyzing metal chelation, identifying new binding modes, and studying protein binding from a mixture of equilibrating isomers.  相似文献   

8.
Addition reactions of acid chlorides with various 2‐substituted 4,5‐dihydro‐4,4‐dimethyl‐5‐(methylsulfanyl)‐1,3‐thiazoles under basic conditions were studied. Two kinds of products were obtained from these additions, β‐lactams and non‐β‐lactam adducts. When the reaction was carried out with 4,5‐dihydro‐1,3‐thiazoles with a Ph substituent at C(2), the reaction proceeded via formal [2+2] cycloaddition and led to the correspoding β‐lactam. On the other hand, acid chlorides and 4,5‐dihydro‐1,3‐thiazoles bearing an α‐H‐atom at the C(2)‐substituent underwent C(α)‐ and/or N‐addition reactions and furnished non‐β‐lactam adducts, i.e., C(α)‐ and/or N‐acylated 1,3‐thiazolidines. The attempted transformations of sulfonyl esters of exo‐6‐hydroxy penams to endo‐6‐azido penams failed, although they were successful with mono‐β‐lactams under the same conditions.  相似文献   

9.
Five sets of 27‐membered combinatorial libraries of alicyclic β‐lactams were prepared via liquid‐phase Ugi 4‐center 3‐component reactions (U‐4C‐3CR) utilizing 3 different cis β‐amino acids, 3 different isonitriles and 5×3 sets of aldehydes. Through combinations of the building blocks of one of these libraries, all of the possible sublibraries were also generated. A few azetidinone derivatives were synthesized individually by parallel synthesis.  相似文献   

10.
β‐Lactam scaffolds are considered to be ideal building blocks for the synthesis of nitrogen‐containing compounds. A new palladium‐catalyzed oxidative carbonylation of N‐allylamines for the synthesis of α‐methylene‐β‐lactams is reported. DFT calculations suggest that the formation of β‐lactams via a four‐membered‐ring transition state is favorable.  相似文献   

11.
The first synthesis of 3‐phenothiazine‐β‐lactams is herein reported. Thirteen new derivatives of β‐lactams were synthesized using various Schiff bases and (phenothiazin‐10‐yl)acetic acid, which in turn was prepared starting from phenothiazine. The sole product of the Staudinger ketene–imine [2 + 2] cycloaddition reaction is the trans‐β‐lactam. All the synthesized compounds were characterized by elemental analyses and spectral (IR, 1H‐NMR, and 13C‐NMR) data.  相似文献   

12.
A gold‐catalyzed desilylative cyclization was developed for facile synthesis of bridged tetracyclic indolenines, a common motif in many natural indole alkaloids. An antimicrobial screen of the cyclization products identified one compound which selectively potentiates β‐lactam antibiotics in methicillin‐resistant S. aureus (MRSA), and re‐sensitizes a variety of MRSA strains to β‐lactams.  相似文献   

13.
Palladium(II)‐catalyzed C−H carbonylation reactions of methylene C−H bonds in secondary aliphatic amines lead to the formation of trans ‐disubstituted β‐lactams in excellent yields and selectivities. The generality of the C−H carbonylation process is aided by the action of xantphos‐based ligands and is important in securing good yields for the β‐lactam products.  相似文献   

14.
The hybrid allenic β‐lactam moiety represents an excellent building block for carbo‐ and heterocyclization reactions, affording a large number of cyclic structures containing different sized skeletons in a single step. This strategy has been studied under thermal and radical‐induced conditions. More recently, the use of transition‐metal catalysis has been introduced as an alternative that relies on the activation of the allenic component. On the other hand, the intramolecular version has attracted much attention as a strategy for the synthesis of bi‐ and tricyclic compounds in a regio‐ and stereoselective manner. This overview focuses on the most recently developed cyclizations on 2‐azetidinone‐tethered allenes along with remarkable early works accounting for the mechanism, as well as for the regio‐ and diastereoselectivities of the cyclizations. DOI 10.1002/tcr.201100011  相似文献   

15.
The first attempts to use ethynylsiloxysilsesquioxanes as reagents for hydrosilylation in the presence of Pt‐ and Ru‐based catalysts are reported. The results obtained strongly depend on the catalytic system used. The catalysts are proved to promote regioselective introduction of β‐(E)‐ and α‐fragments of the alkenylsilane group to the silsesquioxane core. The favourable features of these catalytic systems are their high selectivity and the requirement for relatively mild conditions. This methodology was also successfully applied to dihydro‐substituted organosilicon compounds to obtain a new class of silsesquioxane‐based compounds.  相似文献   

16.
β‐Hydroxy‐α‐amino acids figure prominently as chiral building blocks in chemical synthesis and serve as precursors to numerous important medicines. Reported herein is a method for the synthesis of β‐hydroxy‐α‐amino acid derivatives by aldolization of pseudoephenamine glycinamide, which can be prepared from pseudoephenamine in a one‐flask protocol. Enolization of (R,R)‐ or (S,S)‐pseudoephenamine glycinamide with lithium hexamethyldisilazide in the presence of LiCl followed by addition of an aldehyde or ketone substrate affords aldol addition products that are stereochemically homologous with L ‐ or D ‐threonine, respectively. These products, which are typically solids, can be obtained in stereoisomerically pure form in yields of 55–98 %, and are readily transformed into β‐hydroxy‐α‐amino acids by mild hydrolysis or into 2‐amino‐1,3‐diols by reduction with sodium borohydride. This new chemistry greatly facilitates the construction of novel antibiotics of several different classes.  相似文献   

17.
A facile and fast approach, based on microwave‐enhanced Sonogashira coupling, has been employed to obtain in good yields both mono‐ and, for the first time, disubstituted push–pull ZnII porphyrinates bearing a variety of ethynylphenyl moieties at the β‐pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these β‐mono‐ or disubstituted ZnII porphyrinates and meso‐disubstituted push–pull ZnII porphyrinates. We have obtained evidence that, although the HOMO–LUMO energy gap of the meso‐substituted push–pull dyes is lower, so that charge transfer along the push–pull system therein is easier, the β‐mono‐ or disubstituted push–pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs. This behavior is apparently not attributable to more intense B and Q bands, but rather to more facile charge injection. This is suggested by the DFT electron distribution in a model of a β‐monosubstituted porphyrinic dye interacting with a TiO2 surface and by the positive effect of the β substitution on the incident photon‐to‐current conversion efficiency (IPCE) spectra, which show a significant intensity over a broad wavelength range (350–650 nm). In contrast, meso‐substitution produces IPCE spectra with two less intense and well‐separated peaks. The positive effect exerted by a cyanoacrylic acid group attached to the ethynylphenyl substituent has been analyzed by a photophysical and theoretical approach. This provided supporting evidence of a contribution from charge‐transfer transitions to both the B and Q bands, thus producing, through conjugation, excited electrons close to the carboxylic anchoring group. Finally, the straightforward and effective synthetic procedures developed, as well as the efficiencies observed by photoelectrochemical measurements, make the described β‐monosubstituted ZnII porphyrinates extremely promising sensitizers for use in DSSCs.  相似文献   

18.
β‐Glucans are a group of structurally heterogeneous polysaccharides found in bacteria, fungi, algae and plants. β‐(1,3)‐D ‐Glucans have been studied in most detail due to their impact on the immune system of vertebrates. The studies into the immunomodulatory properties of these glucans are typically carried out with isolates that contain a heterogeneous mixture of polysaccharides of different chain lengths and varying degrees of branching. In order to determine the structure–activity relationship of β‐(1,3)‐glucans, access to homogeneous, structurally‐defined samples of these oligosaccharides that are only available through chemical synthesis is required. The syntheses of β‐glucans reported to date rely on the classical solution‐phase approach. We describe the first automated solid‐phase synthesis of a β‐glucan oligosaccharide that was made possible by innovating and optimizing the linker and glycosylating agent combination. A β‐(1,3)‐glucan dodecasaccharide was assembled in 56 h in a stereoselective fashion with an average yield of 88 % per step. This automated approach provides means for the fast and efficient assembly of linker‐functionalized mono‐ to dodecasaccharide β‐(1,3)‐glucans required for biological studies.  相似文献   

19.
An unprecedented cis‐bimetallic complex of dinaphthoporphycene (DNP), namely [Pd2(μ‐DNP)(μ‐OAc)2], is reported. The most striking feature of this complex is that two palladiums coordinate to the macrocycle on the same side and are closely held together (Pd? Pd: 2.67 Å) by two bridging acetate ligands exhibiting significant metal–metal bonding interaction (bond order 0.18 evaluated by NBO analysis). Interestingly, replacing acetate with acetylacetonate (acac) could stabilize an unusual mono‐palladium complex of DNP, where Pd coordinates unsymmetrically to two ring Ns above the macrocyclic plane, as well as coordinating with two Os of the acac ligand. Remarkably, the rigid DNP core displays enhanced complexation induced aromaticity (as per NICS and HOMA analysis), despite undergoing severe core deformation during complexation with metal ion(s) as noticed from their solid‐state structures.  相似文献   

20.
Amphiphilic block copolymers containing β‐lactam groups on the polyisoprene block were synthesized from poly(isoprene‐b‐ethylene oxide) (IEO) diblock copolymer precursors, prepared by anionic polymerization. β‐Lactam functionalization was achieved via reaction of the polyisoprene (PI) block with chlorosulfonyl isocyanate and subsequent reduction. The resulting block copolymers were molecularly characterized by SEC, FTIR, and NMR spectroscopies and DSC. Functionalization was found to proceed in high yields, altering the solubility properties of the PI block and those of the functionalized diblocks. Hydrogen bond formation is assumed to be responsible for the decreased crystallinity of the poly(ethylene oxide) block (PEO) in the bulk state as indicated by DSC measurements. The self‐assembly behavior of the β‐lactam functionalized poly(isoprene‐b‐ethylene oxide) copolymers (LIEO) in aqueous solutions was studied by dynamic light scattering (DLS), static light scattering (SLS), fluorescence spectroscopy, and atomic force microscopy (AFM). Nearly spherical loose aggregates were formed by the LIEO block copolymers, having lower aggregation numbers and higher cmc values compared to the IEO precursors, as a result of the increased polarity of the β‐lactam rings incorporated in the PI blocks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 24–33, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号